Enhancing dissolving pulp quality of mixed raw materials through pre-hydrolysis kraft-cooking: A study on Acacia crassicarpa and Terminalia catappa
Main Article Content
Abstract
Acacia crassicarpa wood is widely used in Indonesia as a raw material for dissolving pulp (DP) by the kraft-cooking process. Given that Indonesia has a rich variety and abundance of cellulose-rich wood, it is deemed crucial to research alternative raw materials, such as Terminalia catappa wood. As an alternative source of raw material, Terminalia catappa possesses excellent adaptability to various environmental conditions and is easy to grow everywhere. The current research sought to produce DP using the mixtures of materials from these two plant species as raw materials by pre-hydrolysis, kraft-cooking, and Elementary Chlorine Free (ECF) bleaching. The DP produced had ISO brightness > 88%, alpha-cellulose content > 94%, viscosity > 6.2 cP, and pentosan content of 2.54%. The DP quality traits have met the SNI 938:2017 standards for rayon-grade pulp. Acacia Crassicarpa and Terminalia Catappa are the prospective wood mixture for producing high-quality dissolving pulp via the kraft-cooking process.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. Ministry of Industry of the Republic of Indonesia, Could it be the role of industry? Leaning on the pulp and paper industry, 4th ed., Indonesia: Kemenperin, 2021.
3. A.S. Rini, Indonesian Pulp and Paper Industry Enters Top 10 World, Ekonomi.Bisnis.Com. (2019).
4. F.M. Haemmerle, The cellulose gap (the future of cellulose fibres), Lenzing. Ber. 89 (2011) 99–108.
5. H. Sixta, M. Iakovlev, L. Testova, A. Roselli, M. Hummel, M. Borrega, A. van Heiningen, C. Froschauer, H. Schottenberger, Novel concepts of dissolving pulp production, Cellulose. 20 (2013) 1547–1561.
6. E. Mayasari, S. Fukugaichi, E. Johan, N. Matsue, Low-energy extraction of lignocellulose nanofibers from fresh Musa basjoo pseudo-stem, Commun. Sci. Technol. 8 (2023) 108–112.
7. M. F. Laborde, M. C. Gely, V. E. Capdevila, J.M. Ponce-Ortega, A M., Pagano, Techno-economic analysis of the process in obtaining bioethanol from rice husks and whey, Commun. Sci. Technol. 7 (2022) 154–159.
8. D. Li, O. Sevastyanova, M. Ek, Pretreatment of softwood dissolving pulp with ionic liquids, Holzforsch. 66 (2012) 935–943.
9. B. Arnoul-Jarriault, D. Lachenal, C. Chirat, L. Heux, Upgrading softwood bleached kraft pulp to dissolving pulp by cold caustic treatment and acid-hot caustic treatment, Ind. Crops. Prod. 65 (2015) 565–571.
10. R. Biantoro, K. Septiningrum, T. Kardiansyah, Dissolving pulp dari kayu dan non kayu: Tinjauan proses pembuatan dan karakteristiknya, J. Selulosa. 10 (2020) 35.
11. Yusnimar, Evelyn, A. Aman, Chairul, S. Rahmadahana, A. Amri, Manufacturing of high brightness dissolving pulp from sansevieria-trifasciata fiber by effective sequences processes, Commun. Sci. Technol. 7 (2022) 45–49.
12. M. Putri, S. Poeni, Perbandingan kandungan selulosa dan lignin dari kayu Acacia crassicarpa dan Acacia mangium, J. Res. Chem. Eng. 1 (2020) 12–14.
13. M. Idris, O. Rachman, R. Pasaribu, H. Roliadi, N. Hadjib, M. Muslich, Jasni, S. Rulliaty, R. Siagian, Handbook of Selected Indonesia Wood Species, 1st ed., ISWA, PT. Pusaka Semesta Persada, 2008.
14. K.S. Aina, I.M. Adeniyi, A.A. Ademola, Anatomical characteristics of Terminalia catappa wood, For. For. Prod. J. 19 (2019) 80–91.
15. L.W. Ningrum, Sebaran jenis tanaman Terminalia catappa l. beserta potensi benihnya di Kebun Raya Purwodadi, in: Prosiding Biologi Achieving the Sustainable Development Goals with Biodiversity in Confronting Climate Change, Gowa, (2021) 196–203.
16. Marjenah, Ariyanto, Suitability of some species for intercropped with tropical almond (Terminalia catappa linn.) on some land system in east kalimantan and its prospects as plantation forest, J. Penelit. Ekosist Dipterokarpa. 4 (2018) 57–70.
17. S.K. Gulsoy, S. Tufek, Effect of chip mixing ratio of Pinus pinaster and Populus tremula on kraft pulp and paper properties, Ind. Eng. Chem. Res. 52 (2013) 2304–2308.
18. R. Apriani, P. Novianto, Pengaruh pencampuran bahan baku Acacia crassicarpa (AC), Acacia mangium (AM) dan Eucalyptus (ECA) terhadap kualitas pulp, J. Vokasi Teknol. Ind. 2 (2020) 1-13.
19. TAPPI, Ash in wood, pulp, paper, and paperboard combusition at 525 C (T 211 om-07), Tech. Assoc. Pulp Pap. Ind. (2007).
20. BSN, Ekstraktif Terlarut pada Kayu dan Pulp, Badan Standaridisasi Nasional (2017).
21. TAPPI, Acid-insoluble lignin in wood and pulp (T 222 om-02), Tech. Assoc. Pulp Pap. Ind. (2006).
22. TAPPI, Acid soluble lignin in wood and pulp (T 222 om-011), Tech. Assoc. Pulp Pap. Ind. (1991).
23. S. Sugesty, T. Kardiansyah, W. Pratiwi, Potensi Acacia crassicarpa sebagai bahan baku pulp kertas untuk hutan tanaman industri, J. Selulosa. 5 (2015) 21–32.
24. S. Tripathi, O.P. Mishra, A. Gangwar, S.K. Chakrabarti, R. Varadhan, Impact of wood storage on pulp and paper making properties, IPPTA J. 23 (2011) 161–164.
25. TAPPI, Kappa number of pulp (T 236 om-06), Tech. Assoc. Pulp Pap. Ind. (2006).
26. TAPPI, Viscocity of pulp (capillary viscometer method) (T 230 om-08), Tech. Assoc. Pulp Pap. Ind. (2004).
27. TAPPI, Brightness of pulp (T 452 om-23), Tech. Assoc. Pulp Pap. Ind. (2006).
28. G. Henriksson, M. Christiernin, R. Agnemo, Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp, J. Ind. Microbiol. Biotechnol. 32 (2005) 211–214.
29. G.A. Smook, Handbook for Pulp & Paper Technologists, 4th ed., USA: TAPPI Press, 2016.
30. C. Chen, C. Duan, J. Li, Y. Liu, X. Ma, L. Zheng, J. Stavik, Y. Ni, Cellulose (dissolving pulp) manufacturing processes and properties: A mini-review, Bioresources. 11 (2016) 5553–5564.
31. S. Kellomak?i, Forest resources and sustainable management, Pap. Sci. Technol. 2 (1998) 12–426.
32. W.K. Haroen, F. Dimyati, Property of tension wood, heartwood and sapwood Acacia mangium to pulp characteristic, BS. 41 (2006) 1–7.
33. F.A. Abdel-Mohdy, E.S. Abdel-Halim, Y.M. Abu-Ayana, S.M. El-Sawy, Rice straw as a new resource for some beneficial uses, Carbohydr. Polym. 75 (2009) 44–51.
34. M.A. Azeez, Pulping of Non-Woody Biomass, in: Pulp and Paper Processing, InTech, 2018.
35. P.N. Humphreys, A.P. Laws, J. Dawson, A Review of cellulose degradation and the fate of degradation products under repository conditions, Cumbria, UK: NDA, 2010.
36. L. Golbaghi, M. Khamforoush, T. Hatami, Carboxymethyl cellulose production from sugarcane bagasse with steam explosion pulping: Experimental, modeling, and optimization, Carbohydr. Polym. 174 (2017) 780–788.
37. H. Sixta, Handbook of Pulp, 1st ed., Austria: WILEY-VCH Verlag GmbH & Co. KGaA, 2006.
38. A. Holm, R. Niklasson, The effect on wood components during soda pulping, Thesis, Chalmers University of Technology, 2018.
39. U. Germgård, A. Teder, Kinetics of chlorine dioxide pre-bleaching, Trans. Tech. Sect. CPPA. 6 (1980) 31–36.
40. R.H. Kaul, V. Ibrahim, Lignin-Degrading Enzymes: An Overview, in: S.-T. Yang, H.A. El-Enshasy, N. Thongchul (Eds.), Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, 1st ed., John Wiley & Sons, Inc., (2013) 167–192.
41. A. Salaghi, A.S. Putra, A.T. Rizaluddin, M. Kajiyama, H. Ohi, Totally chlorine-free bleaching of prehydrolysis ssoda pulp from plantation hardwoods consisting of various lignin structures, J. Wood Sci. 65 (2019).
42. M. Hubbe, R. Alén, M. Paleologou, M. Kannangara, J. Kihlman, Lignin recovery from spent alkaline pulping liquors using acidification, membrane separation, and related processing steps: A review, Bioresources. 14 (2019) 2300–2351.
43. P.S. Utami, T. Keishi, S.P. Agusta, A.N. Izum, H. Ohi, E. Evelyn, Effects of soluble anthraquinone application on pre-hydrolysis soda cooking of Acacia crassicarpa wood, Jpn. TAPPI J. 75 (2021) 373–379.
44. Y. Anita, E.O. Sari, A. Nakagawa-izumi, Evelyn, H. Ohi, Deoxylapachol in Tectona grandis wood as a catalyst for delignification and carbohydrate protection during the kraft cooking of eucalyptus wood, Cellulose. 30 (2023) 3363–3375.