Novel colored biomass-waste from food industry sector derived hierarchical porous carbon nanofiber for robust symmetric supercapacitor
Main Article Content
Abstract
A major challenge in the use of supercapacitor energy storage applications is optimizing 3D-hierarchical porous and 2D nanofiber structures to improve the electrochemical performance of colored biomass-derived activated carbon (AC). Therefore, this study aims to synthesize AC from Dracaena Angustifolia (DA) leaves and dregs using a sustainable method through chemical activation and high-temperature pyrolysis. AC was designed to be adhesive-free to maintain the true mechanical properties of the precursor. Research results showed that the sample of DA-dregs-KOH shows optimal results with a specific surface area (317.66 m2 g-1). The electrochemical performance of hierarchical porous carbon treated with 1 M H2SO4 electrolyte in a 2-electrode system had a nanofiber structure with the highest specific capacitance (248 F g-1) at 1 A g-1 and energy density (12.96 Wh kg-1) with a coulomb efficiency 84.1%. Based on these results, DA dreg-KOH based porous AC with hierarchical porous morphology shows significant potential to be used as binder-free electrode materials that can produce high-performance supercapacitors as a new renewable and sustainable energy storage solution.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. E. Misran, O. Bani, E.M. Situmeang, A.S. Purba, Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: Isotherm, kinetics, and reusability, Alexandria Eng. J. 61 (2022) 1946–1955.
3. Y. Hamzah, E. Taer, A. Apriwandi, F.L. Supian, N. Mozaffari, N. Mozaffari, Cigarette filter butts-derived activated carbon with free binder electrode design for solid-state supercapacitor application, Commun. Sci. Technol. 8 (2023) 134–142.
4. B. Shaku, T.P. Mofokeng, N.J. Coville, K.I. Ozoemena, M.S. Maubane-Nkadimeng, Biomass valorisation of marula nutshell waste into nitrogen-doped activated carbon for use in high performance supercapacitors, Electrochim. Acta 442 (2023) 141828.
5. K. Yang, Q. Fan, C. Song, Y. Zhang, Y. Sun, W. Jiang, P. Fu, Enhanced functional properties of porous carbon materials as high-performance electrode materials for supercapacitors, Green Energy Resour. 1 (2023) 100030.
6. E. Taer, L. Pratiwi, Apriwandi, W.S. Mustika, R. Taslim, Agustino, Three-dimensional pore structure of activated carbon monolithic derived from hierarchically bamboo stem for supercapacitor application, Commun. Sci. Technol. 5 (2020) 22–30.
7. M. Honarmand, A. Naeimi, M.S. Rezakhani, M.A. Chaji, Ni/NiO doped chitosan-cellulose based on the wastes of barley and shrimp for degradation of ciprofloxacin antibiotic, J. Mater. Res. Technol. 18 (2022) 4060–4074.
8. S. Malayil, L. Loughran, F.M. Ulken, J. Satyavolu, Exploring hemp seed hull biomass for an integrated C-5 biorefinery: Xylose and activated carbon, J. Bioresour. Bioprod. (2024) 1–12.
9. R. Devi, V. Kumar, S. Kumar, M. Bulla, A.K. Mishra, Performance optimization of the symmetric supercapacitors based on paddy straw-derived porous activated carbon, J. Energy Storage 79 (2024) 110167.
10. O. Tomin, R. Vahala, M.R. Yazdani, Synthesis and efficiency comparison of reed straw-based biochar as a mesoporous adsorbent for ionic dyes removal, Heliyon 10 (2024) e24722.
11. D. Kasprzak, M. Gali?ski, Chitin as a universal and sustainable electrode binder for electrochemical capacitors, J. Power Sources 553 (2023) 0–9.
12. N. Izaguirre, M. Alberro, X. Erdocia, J. Labidi, Kraft and organosolv lignin-activated carbon composites for supercapacitor electrode materials, J. Energy Storage 80 (2024) 110386.
13. Y.Y. Minjun Kim, Xingtao Xu, Ruijing Xin, Jacob Earnshaw, Aditya Ashok, Jeonghun Kim, Teahoon Park, Ashok Kumar Nanjundan, Waleed A. El-Said, Jin Woo Yi, Jongbeom Na, KOH - Activated Hollow ZIF - 8 Derived Porous Carbon?: Nanoarchitectured Control for Upgraded Capacitive Deionization and Supercapacitor, ACS Appl. Mater. Interfaces 44 (2021) 52034–52043.
14. Z.W. Zhang, C.Y. Lu, G.H. Liu, Y.J. Cao, Z. Wang, T. ting Yang, Y.H. Kang, X.Y. Wei, H.C. Bai, Self-assembly of caragana-based nanomaterials into multiple heteroatom-doped 3D-interconnected porous carbon for advanced supercapacitors, Mater. Today Adv. 19 (2023) 100394.
15. J. Zhu, J. Song, B. Han, J. Gao, Z. Liu, Y. Wang, G. Xin, Nanoarchitectonics on residual carbon from gasification fine slag upon two step low temperature activation for application in supercapacitors, IScience 26 (2023) 108186.
16. D. Indrasti, N. Andarwulan, E. Hari Purnomo, N. Wulandari, Suji Leaf Chlorophyll: Potential and Challenges as Natural Colorant, J. Ilmu Pertan. Indones. 24 (2019) 109–116.
17. S. Rashmi Manippady, M. Michalska, M. Krajewski, K. Bochenek, M. Basista, A. Zaszczynska, T. Czeppe, L. Rogal, A. Jain, One-step synthesis of a sustainable carbon material for high performance supercapacitor and dye adsorption applications, Mater. Sci. Eng. B 297 (2023).
18. E. Taer, N. Yanti, A. Apriwandi, A. Ismardi, R. Taslim, Novel O , P , S self-doped with 3D hierarchy porous carbon from aromatic agricultural waste via H3PO4 activation for supercapacitor electrodes, Diam. Relat. Mater. 140 (2023) 110415.
19. E. Taer, Apriwandi, F. Hasanah, R. Taslim, Nanofiber-enrich activated carbon coin derived from tofu dregs as electrode materials for supercapacitor, Commun. Sci. Technol. 6 (2021) 41–48.
20. H. Chen, Y. Guo, F. Wang, G. Wang, P. Qi, X. Guo, B. Dai, An activated carbon derived from tobacco waste for use as a supercapacitor electrode material, New Carbon Mater. 32 (2017) 592–599.
21. A. Gopalakrishnan, S. Badhulika, Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications, J. Power Sources 480 (2020) 228830.
22. X. Geng, G. Singh, C.I. Sathish, Z. Li, R. Bahadur, Y. Liu, S. Li, X. Yu, M. Breese, J. Yi, A. Vinu, Biomass derived nanoarchitectonics of porous carbon with tunable oxygen functionalities and hierarchical structures and their superior performance in CO2 adsorption and energy storage, Carbon N. Y. 214 (2023) 118347.
23. K. Al, S. Ba?akç?lardan Kabakc?, Oxygen-rich precursors via glycerol organosolv treatment: Preparation of activated carbon from hazelnut shell and its structural components for possible use in electrodes for supercapacitors, Int. J. Thermofluids 21 (2024).
24. J. Sun, A. Jayakumar, C.G. Díaz-Maroto, I. Moreno, J. Fermoso, O. Mašek, The role of feedstock and activation process on supercapacitor performance of lignocellulosic biochar, Biomass and Bioenergy 184 (2024).
25. N. Zhao, L. Deng, D. Luo, P. Zhang, One-step fabrication of biomass-derived hierarchically porous carbon / MnO nanosheets composites for symmetric hybrid supercapacitor, Appl. Surf. Sci. 526 (2020) 146696.
26. E. Taer, R. Taslim, A. Apriwandi, Biomass-based Self-single-oxygen Heteroatom-doped Hierarchical Porous Carbon Nanosheets for High-performance Symmetrical Supercapacitors, Chemnanomat 8 (2022) e202200217.
27. I.W. Risdianto, A. Ahmad, R.A. Ermawar, Synthesis of cellulose acetate (CA) from algae Gracilaria sp. composited with nickel oxide (NiO) as a supercapacitor base material, Commun. Sci. Technol. 8 (2023) 87–92.
28. X. Liang, R. Liu, X. Wu, Biomass waste derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors, Microporous Mesoporous Mater. 310 (2021) 110659.
29. J. Chaparro-Garnica, D. Salinas-Torres, M.J. Mostazo-López, E. Morallón, D. Cazorla-Amorós, Biomass waste conversion into low-cost carbon-based materials for supercapacitors: A sustainable approach for the energy scenario, J. Electroanal. Chem. 880 (2021) 114899.
30. E. Taer, N.Y. Effendi, R. Taslim, A. Apriwandi, Interconnected micro-mesoporous carbon nanofiber derived from lemongrass for high symmetric supercapacitor performance, J. Mater. Res. Technol. 19 (2022) 4721–4732.
31. P.M. Shafi, N. Joseph, A. Thirumurugan, A.C. Bose, Enhanced Electrochemical Performances of Agglomeration-free LaMnO3 Perovskite Nanoparticles and Achieving High Energy and Power Densities with Symmetric Supercapacitor Design, Chem. Eng. J. 338 (2018) 147–156.
32. J. Wang, Y. Xu, M. Yan, B. Ren, X. Dong, J. Miao, L. Zhang, X. Zhao, Z. Liu, Preparation and application of biomass-based porous carbon with S, N, Zn, and Fe heteroatoms loading for use in supercapacitors, Biomass and Bioenergy 156 (2022) 106301.
33. Z. Husain, S.R.A. R, K.B. Ansari, A.B. Pandit, M.S. Khan, M.A. Qyyum, S.S. Lam, Nano-sized mesoporous biochar derived from biomass pyrolysis as electrochemical energy storage supercapacitor, Mater. Sci. Energy Technol. 5 (2022) 99–109.
34. H. Xu, Y. Zhang, L. Wang, Y. Chen, S. Gao, Hierarchical porous biomass-derived carbon framework with ultrahigh surface area for outstanding capacitance supercapacitor, Renew. Energy 179 (2021) 1826–1835.
35. Y. Zhang, S. Hui, X. Lin, Z. Ying, Y. Li, J. Xie, Novel effective strategy for high-performance biomass-based super-flexible hierarchically porous carbon fibrous film electrode for supercapacitors, J. Alloys Compd. 883 (2021) 160713.
36. Z. Zhang, W. Yang, Y. Wu, G. Yan, L. Li, Y. Qing, X. Lu, Porous 3D Honeycomb Structure Biomass Carbon as a Supercapacitor Electrode Material to Achieve Efficient Energy Storage, Ind. Eng. Chem. Res. 60 (2021) 11079–11085.
37. L. Luo, L. Luo, J. Deng, T. Chen, G. Du, M. Fan, W. Zhao, High performance supercapacitor electrodes based on B / N Co-doped biomass porous carbon materials by KOH activation and hydrothermal treatment, Int. J. Hydrogen Energy 46 (2021) 31927–31937.
38. C. Fang, P. Hu, S. Dong, Y. Cheng, D. Zhang, X. Zhang, Construction of carbon nanorods supported hydrothermal carbon and carbon fiber from waste biomass straw for high strength supercapacitor, J. Colloid Interface Sci. 582 (2021) 552–560.
39. S. Sankaranarayanan, M. Hariram, S. Vivekanandhan, R. Navia, Sustainable biocarbon materials derived from Lessonia Trabeculata macroalgae biomass residue for supercapacitor applications, Energy Storage 3 (2021) e222.
40. B. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices, J. Phys. Chem. C 122 (2018) 194–206.
41. R. Taslim, R. Refanza, M.I. Hamdy, A. Apriwandi, E. Taer, One-step strategy of 3D hierarchical porous carbon with self-heteroatom-doped derived bread waste for high-performance supercapacitor, J. Anal. Appl. Pyrolysis 105956 (2023).
42. C. Huettner, F. Xu, S. Paasch, C. Kensy, Y.X. Zhai, J. Yang, E. Brunner, S. Kaskel, Ultra-hydrophilic porous carbons and their supercapacitor performance using pure water as electrolyte, Carbon N. Y. 178 (2021) 540–551.
43. N.O. Laschuk, E.B. Easton, O. V. Zenkina, Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry, RSC Adv. 11 (2021) 27925–27936.