Techno-economic analysis of biomass-powered fixed bed dryer with air dehumidification for paddy drying

Main Article Content

Mohamad Djaeni
Setia Budi Sasongko
Febiani Dwi Utari
Zulhaq Dahri Siqhny

Abstract

This study introduces the innovative use of synthetic zeolite adsorbents in biomass-powered fixed bed dryers for enhanced paddy drying. The novel integration significantly improves moisture removal and energy efficiency, addressing limitations of conventional drying methods. Key findings include an effective moisture diffusivity of 2.24 × 10?? m²/s and energy efficiency reaching up to 68%. The economic analysis highlights an Internal Rate of Return (IRR) within 2.04 years, confirming the financial viability of this technology. This advanced drying system demonstrates superior performance and sustainability, offering a promising solution for industrial-scale paddy drying.

Downloads

Download data is not yet available.

Article Details

How to Cite
Djaeni, M., Sasongko, S. B., Utari, F. D., & Siqhny, Z. D. (2024). Techno-economic analysis of biomass-powered fixed bed dryer with air dehumidification for paddy drying. Communications in Science and Technology, 9(2), 379-385. https://doi.org/10.21924/cst.9.2.2024.1555
Section
Articles
Author Biographies

Setia Budi Sasongko, Department of Chemical Engineering, Diponegoro University, Semarang 50275, Indonesia

Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia

Febiani Dwi Utari, Department of Chemical Engineering, Diponegoro University, Semarang 50275, Indonesia

Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia

Zulhaq Dahri Siqhny, Department of Agricultural Products Technology, Semarang University, Semarang 50196, Indonesia

Faculty of Agriculture Technology, Semarang University, Semarang 50196, Indonesia

References

1. M. Golmohammadi, M. Foroughi-Dahr, M. Rajabi-Hamaneh, A. R. Shojamoradi, and S. J. Hashemi, Study on drying kinetics of paddy rice: Intermittent drying, Iran. J. Chem. Chem. Eng., 35 3 (2016) 105–117.

2. T. M. R. Dissanayake, D. M. S. P. Bandara, H. M. A. P. Rathnayake, B. M. K. S. Thilakarathne, and D. B. T. Wijerathne, Development of Mobile Dryer for Freshly Harvested Paddy, Procedia Food Sci., 6 December (2016) 78–81.

3. M. Djaeni, V. R. A. Hapsariputri, and F. D. Utari, Performance evaluation of paddy drying using moving bed dryer, AIP Conf. Proc., 2197 January (2020).

4. U. F. Arifin and M. Djaeni, Degradation rate of vitamin B6 on red chili pepper drying by blanching-brine-calcium pretreatment, Commun. Sci. Technol., 2 2 (2017) 37–4.

5. M. R. Manikantan, P. Barnwal, and R. K. Goyal, Drying characteristics of paddy in an integrated dryer, J. Food Sci. Technol., 51 4 (2014) 813–819.

6. F. D. Utari et al., Evaluation of Paddy Drying with Vertical Screw Conveyor Dryer (VSCD) at Different Air Velocities and Temperatures, Chem. Eng. Process. - Process Intensif., 174 (2022) 108881,.

7. J. C. Atuonwu, X. Jin, G. van Straten, H. C. van Deventer Antonius, and J. B. van Boxtel, Reducing energy consumption in food drying: Opportunities in desiccant adsorption and other dehumidification strategies, Procedia Food Sci., 1 (2011) 1799–1805.

8. Y. Jin et al., Relationship between accumulated temperature and quality of paddy, Int. J. Food Prop., 22 1 (2019) 19–33.

9. M. Yahya, Design and Performance Evaluation of a Solar Assisted Heat Pump Dryer Integrated with Biomass Furnace for Red Chilli, Int. J. Photoenergy, (2016) 1–14.

10. M. Pagani, T. G. Johnson, and M. Vittuari, Energy input in conventional and organic paddy rice production in Missouri and Italy: A comparative case study, J. Environ. Manage., 188 (2017) 173–182.

11. A. Iguaz, M. B. San Martín, J. I. Maté, T. Fernández, and P. Vírseda, Modelling effective moisture difusivity of rough rice (Lido cultivar) at low drying temperatures, J. Food Eng., 59 2–3 (2003) 253–258.

12. S. Suherman, E. E. Susanto, A. W. Zardani, N. H. R. Dewi, and H. Hadiyanto, Energy–exergy analysis and mathematical modeling of cassava starch drying using a hybrid solar dryer, Cogent Eng., 7 1 (2020).

13. D. S. Aniesrani Delfiya, Lincy Mathai, S. Murali, K. C. Neethu, Anuja R Nair, and George Ninan, Comparison of clam drying in solar, solar-hybrid, and infrared dryer: Drying characteristics, quality aspects, and techno-economic analysis, Solar Energy, 274 May (2024) 112554.

14. T. Thomasson, J. Raitila, and E. Tsupari, Experimental and techno-economic analysis of solar-assisted heat pump drying of biomass, Energy Rep., 11 (2024) 316–326.

15. M. F. Laborde, V. E. Capdevila, J. M. Ponce-Ortega, M. C. Gely, and A. M. Pagano, Techno-economic analysis of the process in obtaining bioethanol from rice husks and whey, Commun. Sci. Technol., 7 2 (2022) 154–159.

16. A. Bayu, D. Nandiyanto, M. I. Maulana, J. Raharjo, Y. Sunarya, and D. Minghat, Techno-economic analysis for the production of LaNi 5 particles, Commun. Sci. Technol., 5 2 (2020) 70–84.

17. S. B. Sasongko, H. Hadiyanto, M. Djaeni, A. M. Perdanianti, and F. D. Utari, Effects of drying temperature and relative humidity on the quality of dried onion slice, Heliyon, 6 7 (2020) 04338.

18. N. Panyoyai, P. Pathike, T. Wongsiriamnuey, T. Khamdeang, and Y. Tanongkankit, Drying Characteristics of Paddy Dried by Thermosyphon Heat Pipe Heat Exchanger, J. Sci. Technol. MSU, 35 6 (2016) 658–664.

19. M. Djaeni, F. Irfandy, and F. D. Utari, Effect of Temperature on Effective Moisture Diffusivity in Paddy Drying with Dehumidified Air, J. Eng. Appl. Sci., 14 24 (2019) 9592–9597.

20. S. U. Handayani, M. E. Yulianto, Senen, and V. Paramita, Efficacy of zeolite adsorption on the green tea production by fluidized bed dryer, Res. J. Appl. Sci. Eng. Technol., 9 12 (2015) 1128–1131.

21. J. C. Atuonwu, G. Van Straten, H. C. Van Deventer, and A. J. B. Van Boxtel, Optimizing Energy Efficiency in Low Temperature Drying by Zeolite Adsorption and Process Integration, Chem. Eng. Trans., 25 (2011).

22. M. Djaeni, A. C. Kumoro, S. B. Sasongko, and F. Dwi, Drying Rate and Product Quality Evaluation of Roselle ( Hibiscus sabdariffa L .) Calyces Extract Dried with Foaming Agent under Different Temperatures, Int. J. Food Sci., 2018 (2018) 1–17.

23. N. Asiah, M. Djaeni, and C. L. Hii, Moisture Transport Mechanism and Drying Kinetic of Fresh Harvested Red Onion Bulbs under Dehumidified Air, Int. J. Food Eng., vol. 13 9 (2017).

24. S. R. Bello, T. A. Adegbulugbe, and P. S. N. Onyekwere, Comparative study on utilization of charcoal, sawdust and rice husk in heating oven, Agric. Eng. Int., 12 (2010) 29-33.

25. M. Djaeni, N. Asiah, S. Suherman, A. Sutanto, and A. Nurhasanah, Energy Efficient Dryer with Rice Husk Fuel for Agriculture Drying, Int. J. Renew. Energy Dev. 4 1 (2015) 20–24.

26. S. B. Sasongko, B. P. Rini, H. Maehiroh, F. D. Utari, and M. Djaeni, The Effect of Temperature on Vermicelli Drying under Dehumidified Air, IOP Conf. Ser.: Mater. Sci. Eng. [Internet]. 1053 1 (2021) 012102.

27. M. Djaeni, A. C. Kumoro, S. B. Sasongko, and F. D. Utari, Drying rate and product quality evaluation of roselle (Hibiscus sabdariffa L.) calyces extract dried with foaming agent under different temperatures, Int. J. Food Sci. (2018).

28. X. jun Li, X. Wang, Y. Li, P. Jiang, and H. Lu, Changes in moisture effective diffusivity and glass transition temperature of paddy during drying, Comput. Electron. Agric., 128 (2016) 112–119.

29. S. Tirawanichakul, S. Wanthong, and Y. Tirawanichakul, Effective moisture diffusivity, moisture sorption, thermo-physical properties and infrared drying kinetics of germinated paddy, Songklanakarin J. Sci. Technol, 36 1 (2014) 115–124.

30. D. Q. A’yuni, A. Subagio, A. Prasetyaningrum, S. B. Sasongko, and M. Djaeni, The optimization of paddy drying in the rotary dryer: energy efficiency and product quality aspects analysis, Food Res., 8 (2024) 125–135.

31. M. Tohidi, M. Sadeghi, and M. Torki-Harchegani, Energy and quality aspects for fixed deep bed drying of paddy, Renew. Sustain. Energy Rev., 70 (2017) 519–528.