Cobalt-nickel supported on desilicated HZSM-5 for the conversion of Reutealis trisperma (blanco) airy shaw oil to liquid hydrocarbon products

Main Article Content

Lenny Marlinda
Rahmi
Abdul Aziz
Achmad Roesyadi
Danawati Hari Prajitno
Yustia Wulandari Mirzayanti
Muhammad Al-Muttaqii

Abstract

Desilication/alkaline treatment and metal impregnation were used to create the HZSM-5 catalyst supported by Co-Ni.  These catalysts' isotherm patterns combined type I and type IV isotherms.  This isotherm pattern showed a hysteresis loop at comparatively higher pressures.  The pore size distribution of the mesoporous HZSM-5 catalysts was situated between 6 and 12 nm in size.  Its use in the hydrocracking of Reutealis trisperma (Blanco) airy shaw oil (RTO) to produce biofuel was investigated.  The results of the catalytic test showed that the hydrocarbon makeup of the biofuel was comparable to that of fuel.  In comparison to HZSM-5, the mesoporous Co-Ni/HZSM-5 catalyst enhanced n-paraffin by 46.32 area% and aromatic by 34.18 area% in the hydrocracking of RTO.

Downloads

Download data is not yet available.

Article Details

How to Cite
Marlinda, L., Rahmi, Aziz, A., Roesyadi, A., Hari Prajitno, D., Mirzayanti, Y. W., & Al-Muttaqii, M. (2025). Cobalt-nickel supported on desilicated HZSM-5 for the conversion of Reutealis trisperma (blanco) airy shaw oil to liquid hydrocarbon products. Communications in Science and Technology, 10(1), 87-97. https://doi.org/10.21924/cst.10.1.2025.1570
Section
Articles

References

M. Al-Muttaqii, L. Marlinda, A. Roesyadi, and D. Hari Prajitno, Co-Ni/HZSM-5 Catalyst for Hydrocracking of Sunan Candlenut Oil (Reutealis trisperma (Blanco) Airy Shaw) for Production of Biofuel, The J. pure appl. chem. res. 6 (2017) 84–92.

L. Marlinda, M. Al-Muttaqii, A. Roesyadi, and D. H. Prajitno, Formation of hydrocarbon compounds during the hydrocracking of non-edible vegetable oils with cobalt-nickel supported on hierarchical HZSM-5 catalyst, IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, 2017.

L. Marlinda, M. Al Muttaqii, and A. Roesyadi, Production of Biofuel by Hydrocracking of Cerbera Manghas Oil Using Co-Ni/HZSM-5 Catalyst: Effect of Reaction Temperature, The J. pure appl. chem. res. 5 (2016) 189–195.

Y. W. Mirzayanti, A. Roesyadi, and D. H. Prajitno, Triglyceride of Kapok seed Oil to biofuel over a synthesised Cu-Mo supported HZSM-5 catalyst, IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2019.

D. H. Prajitno, A. Roesyadi, M. Al-Muttaqii, and L. Marlinda, Hydrocracking of non-edible vegetable oils with Co-Ni/HZSM-5 catalyst to gasoil containing aromatics, Bull. Chem. React. Eng. Catal. 12 (2017) 318–328.

R. Rasyid, A. Prihartantyo, M. Mahfud, and A. Roesyadi, Hydrocracking of Calophyllum inophyllum oil with non-sulfide CoMo catalysts, Bull. Chem. React. Eng. Catal. 10 (2015) 61–69.

E. G. S. Junior, L. F. B. D. Souza, V. H. Perez, F. D. S. Melo, N. F. D. Santos et al., Non-edible Oil Plants for Biodiesel Production, in Clean Energy Production Technologies: Novel Feedstocks for Biofuels Production, A. Guldhe and B. Singh, Eds., Singapore: Springer, 2022.

M. A. H. Shaah, F. Allafi, M. S. Hossain, A. Alsaedi, N. Ismail, M. O. A. Kadir et al., Candlenut oil: review on oil properties and future liquid biofuel prospects, Renew Sust Energ Rev. 45 (2021) 17057–17079.

M. A. H. Shaah, M. S. Hossain, F. A. S. Allafi, A. Alsaedi, N. Ismail, M. O. A. Kadir et al., A review on non-edible oil as a potential feedstock for biodiesel: physicochemical properties and production technologies, RSC Adv. 11 (2021) 25018–25037.

M. Herman, B. Hafif, Y. Ferry and A. Aunillah, The prospect of kemiri sunan (Reutalis trisperma B. airy shaw) development as a source of bio-oil from inedible crops, E3S Web of Conferences, EDP Sciences, 2023.

S. Supriyadi, P. Purwanto, H. Hermawan, D. D. Anggoro, C. Carsoni, and A. Mukhtar, Characteristics of Kemiri Sunan (reutalis trisperma (blanco) airy shaw) biodiesel processed by a one stage transesterification process, IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, 2021.

T. M. I. Riayatsyah, H. C. Ong, W. T. Chong, L. Aditya, H. Hermansyah, and T. M. I. Mahlia, Life cycle cost and sensitivity analysis of reutealis trisperma as non-edible feedstock for future biodiesel production, Energies (Basel), 10 (2017).

M. A. H. Shaah, M. S. Hossain, F. Allafi, M. O. Ab Kadir, and M. I. Ahmad, Biodiesel production from candlenut oil using a non-catalytic supercritical methanol transesterification process: optimization, kinetics, and thermodynamic studies, RSC Adv. 12 (2022) 9845–9861.

M. Al-Muttaqii, F. Kurniawansyah, D. H. Prajitno, and A. Roesyadi, Hydrocracking process of coconut oil using Ni-Zn/HZSM-5 catalyst for hydrocarbon biofuel production, Journal of Physics: Conference Series, IOP Publishing Ltd, 2021.

Y. W. Mirzayanti, F. Kurniawansyah, D. Hari Prajitno, and A. Roesyadi, Zn-Mo/HZSM-5 Catalyst for Gasoil Range Hydrocarbon Production by Catalytic Hydrocracking of Ceiba pentandra Oil’, Bull. Chem. React. Eng. Catal. 13 (2018) 136–143.

L. Qin, J. Li, S. Zhang, Z. Liu, S. Li, and L. Luo, Catalytic performance of Ni-Co/HZSM-5 catalysts for aromatic compound promotion in simulated bio-oil upgrading, RSC Adv, 13 (2023) 7694–7702.

I. M. S. Anekwe, B. Oboirien, and Y. M. Isa, Catalytic conversion of bioethanol over cobalt and nickel-doped HZSM-5 zeolite catalysts, Biofuels, Bioprod. Bioref. 8 (2024) 686–700.

I. M. S. Anekwe, B. Oboirien, and Y. M. Isa, Performance evaluation of a newly developed transition metal-doped HZSM-5 zeolite catalyst for single-step conversion of C1-C3 alcohols to fuel-range hydrocarbons, Energy Adv. 3 (2024) 1314–1328.

M. Al-Muttaqii, F. Kurniawansyah, D. H. Prajitno, and A. Roesyadi, Hydrocracking of coconut oil over Ni-Fe/HZSM-5 catalyst to produce hydrocarbon biofuel, Indones. J. Chem. 19 (2019) 319–327.

M. Al-Muttaqii, F. Kurniawansyah, D. H. Prajitno, and A. Roesyadi, Bio-kerosene and bio-gasoil from coconut oils via hydrocracking process over Ni-Fe/HZSM-5 catalyst, Bull. Chem. React. Eng. Catal., 14 (2019) 309–319.

K. Hao, B. Shen, Y. Wang, and J. Ren, Influence of combined alkaline treatment and Fe-Ti-loading modification on ZSM-5 zeolite and its catalytic performance in light olefin production, J. Indust. Eng. Chem. 18 (2012) 1736–1740.

M. L. Gou, R. Wang, Q. Qiao, and X. Yang, Effect of mesoporosity by desilication on acidity and performance of HZSM-5 in the isomerization of styrene oxide to phenylacetaldehyde, Microporous and Mesoporous Materials, 206 (2016) 170–176.

V. Rac, V. Rakíc, Z. Miladinovíc, D. Stoši?, and A. Aurouxc, Influence of the desilication process on the acidity of HZSM-5 zeolite, Thermochim Acta, 567 (2013) 73–78.

M. Al-Muttaqii, M. P. Marbun, S. Sudibyo, A. Aunillah, D. Pranowo, H. Hasanudin et al., Conversion of Sunan Candlenut Oil to Aromatic Hydrocarbons with Hydrocracking Process Over Nano-HZSM-5 Catalyst, Bull. Chem. React. Eng. Catal, 19 (2024) 141–148.

L. Marlinda, M. Al-Muttaqii, A. Roesyadi, and D. H. Prajitno, Effect of cobalt supported on the hierarchical Ni/HZSM-5 catalyst in hydrocracking of Sunan candlenut oil (Reutealis trisperma (Blanco) airy shaw), Journal of Physics: Conference Series, Institute of Physics Publishing, 2020.

L. Marlinda, M. Al-Muttaqii, I. Gunardi, A. Roesyadi, and D. H. Prajitno, Hydrocracking of Cerbera manghas Oil with Co-Ni/HZSM-5 as Double Promoted Catalyst, Bull. Chem. React. Eng. Catal. 12 (2017) 167–184.

A. E. Barrón, J. A. Melo-banda, J. M. Dominguez, E. Hernandez, R. Silva, A. I. Reyes et al., Catalytic hydrocracking of vegetable oil for agrofuels production using Ni-Mo, Ni-W, Pt and TFA catalysts supported on SBA-15, Catal. Today, 116 (2011) 102–110.

C. Wang, Q. Liu, J. Song, W. Li, P. Li, R. Xu et al., High quality diesel-range alkanes production via a single-step hydrotreatment of vegetable oil over Ni/zeolite catalyst, Catal Today, 234 (2014) 153–160.

H. Juwono, A. Zakiyah, R. Subagyo, and Y. Kusumawati, Facile Production of Biodiesel from Candlenut Oil (Aleurites moluccana L.) Using Photocatalytic Method by Nano Sized-ZnO Photocatalytic Agent Synthesized via Polyol Method, Indones. J. Chem. 23 (2023) 1304–1314.

K. Shimura, T. Miyazawa, T. Hanaoka, and S. Hirata, Fischer-Tropsch synthesis over alumina supported bimetallic Co-Ni catalyst: Effect of impregnation sequence and solution, J. Mol. Catal. A Chem. 407 (2015) 15–24.

L. S. Da Silva, C. A. Araki, S. M. P. Marcucci, V. L. D S. T. D. Silva, and P. A. Arroyo, Desilication of ZSM-5 and ZSM-12 Zeolites with Different Crystal Sizes: Effect on Acidity and Mesoporous Initiation, Materials Research. 22 (2019) 1–9.

F. Gorzin, J. Towfighi Darian, F. Yaripour, and S. M. Mousavi, Preparation of hierarchical HZSM-5 zeolites with combined desilication with NaAlO 2 /tetrapropylammonium hydroxide and acid modification for converting methanol to propylene, RSC Adv. 8 (2018) 41131–41142.

H. Heriyanto, O. Muraza, G. A. Nasser, M. A. Sanhoob, I. A. Bakare, Budhijanto et al., Improvement of Catalyst Activity in Methanol-to-Olefin Conversion via Metal (Sr/La) Impregnation over ZSM-5 Catalyst, Int. J. Technol. 14 (2023) 142–151.

D. Dittmann, E. Kaya, and M. Dyballa, Desilicated ZSM-5 Catalysts: Properties and Ethanol to Aromatics (ETA) Performance, ChemCatChem. 15 (2023) 1–12.

Y. Hou, X. Li, M. Sun, C. Li, S. H. Bakhtiar, K. Lei et al., The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance, Front. Chem. Sci. Eng. 15 (2021) 269–278.

Q. Ma, T. Fu, Y. Wang, H. Li, L. Cui, and Z. Li, Development of mesoporous ZSM-5 zeolite with microporosity preservation through induced desilication, J. Mater. Sci. 55 (2020) 11870–11890.

S. Wang, Q. Yin, J. Guo, B. Ru, and L. Zhu, Improved Fischer-Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalysts, Fuel, 8 (2013) 597–603.

A. N. Aini, M. Al-Muttaqii, A. Roesyadi, and F. Kurniawansyah, Performance of Ni-Cu/HZSM-5 catalyst in hydrocracking process to produce biofuel from cerbera manghas oil, Key Engineering Materials, Trans Tech Publications Ltd, 2021, pp. 149–156.

E. D. da S. Ferracine, K. T. G. Carvalho, D. S. A. Silva, and E. A. Urquieta-Gonzalez, Carbon-Templated Mesopores in HZSM-5 Zeolites: Effect on Cyclohexane Cracking, Catal Letters. 150 (2020) 3481–3494.

S. S. Vieira, Z. M. Magriotis, M. F. Ribeiro, I. Graca, A. Fernandes, J. M. F. M. Lopes et al., Use of HZSM-5 modified with citric acid as acid heterogeneous catalyst for biodiesel production via esterification of oleic acid, Microporous and Mesoporous Mater. 201 (2015) 160–168.

I. Barroso-Martín, D. Ballesteros-Plata, A. Infantes-Molina, M. O. Guerrero-Pérez, J. Santamaría-González, and E. Rodríguez-Castellón, An Overview of Catalysts for the Hydrodeoxygenation Reaction of Model Compounds from Lignocellulosic Biomass’, IET Renew. Power Gener. 16 (2022) 3009–3022.

J. García-Dávila, E. Ocaranza-Sánchez, M. Rojas-López, J. A. Muñoz-Arroyo, J. Ramírez, and A. L. Martínez-Ayala, Jatropha curcas L. oil hydroconversion over hydrodesulfurization catalysts for biofuel production, Fuel. 135 (2014) 380–386.

M. Romero, A. Pizzi, G. Toscano, A. A. Casazza, G. Busca, B. Bosio et al., Preliminary experimental study on biofuel production by deoxygenation of Jatropha oil, Fuel Process. Technol. 137 (2015) 31–37.

B. Veriansyah, J. Y. Han, S. K. Kim, S. Hong, Y. J. Kim, J. S. Lim et al., Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts, Fuel. 94 (2012) 578–585.

G. N. da R. Filho, D. Brodzki, and G. Djega-Mariadassou, Formation of alkanes, alkylcycloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable oils, Fuel. 72 (1993) 543–549.

M. Rabaev, M. V. Landau, R. Vidruk-Nehemya, V. Koukouliev, R. Zarchin, and M. Herskowitz, Conversion of vegetable oils on Pt/Al2O3/SAPO-11 to diesel and jet fuels containing aromatics, Fuel. 161 (2015) 287–294.

S. Vichaphund, D. Aht-Ong, V. Sricharoenchaikul, and D. Atong, Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods, Renew. Energy. 79 (2015) 28–37.

T. Riyanto, I. Istadi, B. Jongsomjit, D. D. Anggoro, A. A. Pratama, and M. A. Al Faris, Improved brønsted to lewis (B/L) ratio of co-and mo-impregnated ZSM-5 catalysts for palm oil conversion to hydrocarbon-rich biofuels, Catalysts. 11 (2021).

D. D. Anggoro, L. Buchori, G. C. Silaen, and R. N. Utami, Preparation, characterization, and activation of Co-Mo/Y zeolite catalyst for coal tar conversion to liquid fuel, Bull. Chem. React. Eng. Catal. 12 (2017) 219–226.

H. Chen, Q. Wang, X. Zhang, and L. Wang, Quantitative conversion of triglycerides to hydrocarbons over hierarchical ZSM-5 catalyst, Appl. Catal. B. (2015) 166–167.