Cobalt-nickel supported on desilicated HZSM-5 for the conversion of Reutealis trisperma (blanco) airy shaw oil to liquid hydrocarbon products
Main Article Content
Abstract
Desilication/alkaline treatment and metal impregnation were used to create the HZSM-5 catalyst supported by Co-Ni. These catalysts' isotherm patterns combined type I and type IV isotherms. This isotherm pattern showed a hysteresis loop at comparatively higher pressures. The pore size distribution of the mesoporous HZSM-5 catalysts was situated between 6 and 12 nm in size. Its use in the hydrocracking of Reutealis trisperma (Blanco) airy shaw oil (RTO) to produce biofuel was investigated. The results of the catalytic test showed that the hydrocarbon makeup of the biofuel was comparable to that of fuel. In comparison to HZSM-5, the mesoporous Co-Ni/HZSM-5 catalyst enhanced n-paraffin by 46.32 area% and aromatic by 34.18 area% in the hydrocracking of RTO.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[2] L. Marlinda, M. Al-Muttaqii, A. Roesyadi, and D. H. Prajitno, ‘Formation of hydrocarbon compounds during the hydrocracking of non-edible vegetable oils with cobalt-nickel supported on hierarchical HZSM-5 catalyst’, in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Jun. 2017. doi: 10.1088/1755-1315/67/1/012022.
[3] L. Marlinda, M. Al Muttaqii, and A. Roesyadi, ‘Production of Biofuel by Hydrocracking of Cerbera Manghas Oil Using Co-Ni/HZSM-5 Catalyst: Effect of Reaction Temperature’, The Journal of Pure and Applied Chemistry Research, vol. 5, no. 3, pp. 189–195, Sep. 2016, doi: 10.21776/ub.jpacr.2016.005.03.254.
[4] Y. W. Mirzayanti, A. Roesyadi, and D. H. Prajitno, ‘Triglyceride of Kapok seed Oil to biofuel over a synthesised Cu-Mo supported HZSM-5 catalyst’, in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jan. 2019. doi: 10.1088/1757-899X/462/1/012023.
[5] D. H. Prajitno, A. Roesyadi, M. Al-Muttaqii, and L. Marlinda, ‘Hydrocracking of non-edible vegetable oils with Co-Ni/HZSM-5 catalyst to gasoil containing aromatics’, Bulletin of Chemical Reaction Engineering and Catalysis, vol. 12, no. 3, pp. 318–328, 2017, doi: 10.9767/bcrec.12.3.799.318-328.
[6] R. Rasyid, A. Prihartantyo, M. Mahfud, and A. Roesyadi, ‘Hydrocracking of Calophyllum inophyllum oil with non-sulfide CoMo catalysts’, Bulletin of Chemical Reaction Engineering and Catalysis, vol. 10, no. 1, pp. 61–69, Apr. 2015, doi: 10.9767/bcrec.10.1.6597.61-69.
[7] E. G. S. Junior et al., ‘Non-edible Oil Plants for Biodiesel Production’, in Clean Energy Production Technologies: Novel Feedstocks for Biofuels Production, A. Guldhe and B. Singh, Eds., Singapore: Springer, 2022. doi: https://doi.org/10.1007/978-981-19-3582-4.
[8] M. A. H. Shaah et al., ‘Candlenut oil: review on oil properties and future liquid biofuel prospects’, Int J Energy Res, vol. 45, no. 12, pp. 17057–17079, Oct. 2021, doi: 10.1002/er.6446.
[9] M. A. H. Shaah et al., ‘A review on non-edible oil as a potential feedstock for biodiesel: physicochemical properties and production technologies’, RSC Adv, vol. 11, no. 40, pp. 25018–25037, Jul. 2021, doi: 10.1039/d1ra04311k.
[10] M. A. H. Shaah, M. S. Hossain, F. Allafi, M. O. Ab Kadir, and M. I. Ahmad, ‘Biodiesel production from candlenut oil using a non-catalytic supercritical methanol transesterification process: optimization, kinetics, and thermodynamic studies’, RSC Adv, vol. 12, no. 16, pp. 9845–9861, Mar. 2022, doi: 10.1039/d2ra00571a.
[11] M. Al-Muttaqii, F. Kurniawansyah, D. H. Prajitno, and A. Roesyadi, ‘Hydrocracking process of coconut oil using Ni-Zn/HZSM-5 catalyst for hydrocarbon biofuel production’, in Journal of Physics: Conference Series, IOP Publishing Ltd, Jan. 2021. doi: 10.1088/1742-6596/1725/1/012008.
[12] Y. W. Mirzayanti, F. Kurniawansyah, D. Hari Prajitno, and A. Roesyadi, ‘Zn-Mo/HZSM-5 Catalyst for Gasoil Range Hydrocarbon Production by Catalytic Hydrocracking of Ceiba pentandra Oil’, Bulletin of Chemical Reaction Engineering & Catalysis, vol. 13, no. 1, pp. 136–143, 2018, doi: 10.9767/bcrec.13.1.1354.136-143.
[13] L. Qin, J. Li, S. Zhang, Z. Liu, S. Li, and L. Luo, ‘Catalytic performance of Ni-Co/HZSM-5 catalysts for aromatic compound promotion in simulated bio-oil upgrading’, RSC Adv, vol. 13, no. 11, pp. 7694–7702, Mar. 2023, doi: 10.1039/d2ra07706j.
[14] I. M. S. Anekwe, B. Oboirien, and Y. M. Isa, ‘Catalytic conversion of bioethanol over cobalt and nickel-doped HZSM-5 zeolite catalysts’, Biofuels, Bioproducts and Biorefining, vol. 18, no. 3, pp. 686–700, May 2024, doi: 10.1002/bbb.2536.
[15] I. M. S. Anekwe, B. Oboirien, and Y. M. Isa, ‘Performance evaluation of a newly developed transition metal-doped HZSM-5 zeolite catalyst for single-step conversion of C1-C3 alcohols to fuel-range hydrocarbons’, Energy Advances, vol. 3, no. 6, pp. 1314–1328, May 2024, doi: 10.1039/d3ya00460k.
[16] M. Al-Muttaqii, F. Kurniawansyah, D. H. Prajitno, and A. Roesyadi, ‘Hydrocracking of coconut oil over Ni-Fe/HZSM-5 catalyst to produce hydrocarbon biofuel’, Indonesian Journal of Chemistry, vol. 19, no. 2, pp. 319–327, 2019, doi: 10.22146/ijc.33590.
[17] M. Al-Muttaqii, F. Kurniawansyah, D. H. Prajitno, and A. Roesyadi, ‘Bio-kerosene and bio-gasoil from coconut oils via hydrocracking process over Ni-Fe/HZSM-5 catalyst’, Bulletin of Chemical Reaction Engineering and Catalysis, vol. 14, no. 2, pp. 309–319, Aug. 2019, doi: 10.9767/bcrec.14.2.2669.309-319.
[18] K. Hao, B. Shen, Y. Wang, and J. Ren, ‘Influence of combined alkaline treatment and Fe-Ti-loading modification on ZSM-5 zeolite and its catalytic performance in light olefin production’, Journal of Industrial and Engineering Chemistry, vol. 18, no. 5, pp. 1736–1740, Sep. 2012, doi: 10.1016/j.jiec.2012.03.019.
[19] M. L. Gou, R. Wang, Q. Qiao, and X. Yang, ‘Effect of mesoporosity by desilication on acidity and performance of HZSM-5 in the isomerization of styrene oxide to phenylacetaldehyde’, Microporous and Mesoporous Materials, vol. 206, no. C, pp. 170–176, Apr. 2015, doi: 10.1016/j.micromeso.2014.12.006.
[20] V. Rac, V. Rakíc, Z. Miladinovíc, D. Stoši?, and A. Aurouxc, ‘Influence of the desilication process on the acidity of HZSM-5 zeolite’, Thermochim Acta, vol. 567, pp. 73–78, 2013, doi: 10.1016/j.tca.2013.01.008.
[21] M. Al-Muttaqii et al., ‘Conversion of Sunan Candlenut Oil to Aromatic Hydrocarbons with Hydrocracking Process Over Nano-HZSM-5 Catalyst’, Bulletin of Chemical Reaction Engineering and Catalysis, vol. 19, no. 1, pp. 141–148, 2024, doi: 10.9767/bcrec.20116.
[22] L. Marlinda, M. Al-Muttaqii, I. Gunardi, A. Roesyadi, and D. H. Prajitno, ‘Hydrocracking of Cerbera manghas Oil with Co-Ni/HZSM-5 as Double Promoted Catalyst’, Bulletin of Chemical Reaction Engineering and Catalysis, vol. 12, no. 2, pp. 167–184, 2017, doi: 10.9767/bcrec.12.2.496.167-184.
[23] A. E. Barrón C. et al., ‘Catalytic hydrocracking of vegetable oil for agrofuels production using Ni-Mo, Ni-W, Pt and TFA catalysts supported on SBA-15’, in Catalysis Today, May 2011, pp. 102–110. doi: 10.1016/j.cattod.2011.01.026.
[24] H. Juwono, A. Zakiyah, R. Subagyo, and Y. Kusumawati, ‘Facile Production of Biodiesel from Candlenut Oil (Aleurites moluccana L.) Using Photocatalytic Method by Nano Sized-ZnO Photocatalytic Agent Synthesized via Polyol Method’, Indonesian Journal of Chemistry, vol. 23, no. 5, pp. 1304–1314, 2023, doi: 10.22146/ijc.82895.
[25] L. Marlinda, M. Al-Muttaqii, A. Roesyadi, and D. H. Prajitno, ‘Effect of cobalt supported on the hierarchical Ni/HZSM-5 catalyst in hydrocracking of Sunan candlenut oil (Reutealis trisperma (Blanco) airy shaw)’, in Journal of Physics: Conference Series, Institute of Physics Publishing, Jan. 2020. doi: 10.1088/1742-6596/1442/1/012048.
[26] K. Shimura, T. Miyazawa, T. Hanaoka, and S. Hirata, ‘Fischer-Tropsch synthesis over alumina supported bimetallic Co-Ni catalyst: Effect of impregnation sequence and solution’, J Mol Catal A Chem, vol. 407, pp. 15–24, Jun. 2015, doi: 10.1016/j.molcata.2015.06.013.
[27] D. Dittmann, E. Kaya, and M. Dyballa, ‘Desilicated ZSM-5 Catalysts: Properties and Ethanol to Aromatics (ETA) Performance’, ChemCatChem, vol. 15, no. 20, pp. 1–12, Oct. 2023, doi: 10.1002/cctc.202300716.
[28] Y. Hou et al., ‘The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance’, Front Chem Sci Eng, vol. 15, no. 2, pp. 269–278, Apr. 2021, doi: 10.1007/s11705-020-1948-3.
[29] L. S. Da Silva, C. A. Araki, S. M. P. Marcucci, V. L. dos S. T. Da Silva, and P. A. Arroyo, ‘Desilication of ZSM-5 and ZSM-12 Zeolites With Different Crystal Sizes: Effect on Acidity and Mesoporous Initiation’, Materials Research, vol. 22, no. 2, pp. 1–9, 2019, doi: 10.1590/1980-5373-MR-2018-0872.
[30] Q. Ma, T. Fu, Y. Wang, H. Li, L. Cui, and Z. Li, ‘Development of mesoporous ZSM-5 zeolite with microporosity preservation through induced desilication’, J Mater Sci, vol. 55, no. 26, pp. 11870–11890, Sep. 2020, doi: 10.1007/s10853-020-04855-5.
[31] S. Wang, Q. Yin, J. Guo, B. Ru, and L. Zhu, ‘Improved Fischer-Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalysts’, Fuel, vol. 108, pp. 597–603, 2013, doi: 10.1016/j.fuel.2013.02.021.
[32] A. N. Aini, M. Al-Muttaqii, A. Roesyadi, and F. Kurniawansyah, ‘Performance of ni-cu/hzsm-5 catalyst in hydrocracking process to produce biofuel from cerbera manghas oil’, in Key Engineering Materials, Trans Tech Publications Ltd, 2021, pp. 149–156. doi: 10.4028/www.scientific.net/KEM.884.149.
[33] E. D. da S. Ferracine, K. T. G. Carvalho, D. S. A. Silva, and E. A. Urquieta-Gonzalez, ‘Carbon-Templated Mesopores in HZSM-5 Zeolites: Effect on Cyclohexane Cracking’, Catal Letters, vol. 150, no. 12, pp. 3481–3494, Dec. 2020, doi: 10.1007/s10562-020-03262-4.
[34] I. Barroso-Martín, D. Ballesteros-Plata, A. Infantes-Molina, M. O. Guerrero-Pérez, J. Santamaría-González, and E. Rodríguez-Castellón, ‘An Overview of Catalysts for the Hydrodeoxygenation Reaction of Model Compounds from Lignocellulosic Biomass’, IET Renewable Power Generation, vol. 16, no. 14, pp. 3009–3022, Oct. 2022, doi: 10.1049/rpg2.12477.
[35] J. García-Dávila, E. Ocaranza-Sánchez, M. Rojas-López, J. A. Muñoz-Arroyo, J. Ramírez, and A. L. Martínez-Ayala, ‘Jatropha curcas L. oil hydroconversion over hydrodesulfurization catalysts for biofuel production’, Fuel, vol. 135, pp. 380–386, Nov. 2014, doi: 10.1016/j.fuel.2014.07.006.
[36] M. Romero et al., ‘Preliminary experimental study on biofuel production by deoxygenation of Jatropha oil’, Fuel Processing Technology, vol. 137, pp. 31–37, Sep. 2015, doi: 10.1016/j.fuproc.2015.04.002.
[37] B. Veriansyah et al., ‘Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts’, Fuel, vol. 94, pp. 578–585, Apr. 2012, doi: 10.1016/j.fuel.2011.10.057.
[38] G. N. da R. Filho, D. Brodzki, and G. Djega-Mariadassou, ‘Formation of alkanes, alkylcycloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable oils’, Fuel, vol. 72, no. 4, pp. 543–549, 1993.
[39] M. Rabaev, M. V. Landau, R. Vidruk-Nehemya, V. Koukouliev, R. Zarchin, and M. Herskowitz, ‘Conversion of vegetable oils on Pt/Al2O3/SAPO-11 to diesel and jet fuels containing aromatics’, Fuel, vol. 161, pp. 287–294, Dec. 2015, doi: 10.1016/j.fuel.2015.08.063.
[40] S. Vichaphund, D. Aht-Ong, V. Sricharoenchaikul, and D. Atong, ‘Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods’, Renew Energy, vol. 79, no. 1, pp. 28–37, 2015, doi: 10.1016/j.renene.2014.10.013.