Kinetic study of bioactive compound extraction from cacao shell waste by conventional and deep eutectic solvent
Main Article Content
Abstract
Cacao shells contain bioactive compounds such as phenolic acids and flavonoids. This study investigated the potential of bioactive compound extraction in cacao shells using conventional and green solvents like deep eutectic solvent (DES) (choline chloride: lactic acid). Specifically, it investigated the extraction kinetic models and parameters, which are critical to scale up the extraction process. The extraction of cacao shell was conducted using various conventional solvents (ethanol, methanol, n-hexane, and water) and DES (100 % and 70%) in which the result showed that DES 100% had the highest total phenolic content of 337.92?±?9.55 mg GAE/g dry weight. Meanwhile, pseudo-second order and Peleg’s model provided the best fit for the experimental data with higher R2 values. DES 70% showed a higher total flavonoid content of 76.51?±?1.59 mg RE/g dry weight. FT-IR and Raman spectroscopy confirmed the presence of bioactive compounds in DES-based extracts, which revealed characteristic vibrational bands associated with polyphenolic structures. These include bands corresponding to hydroxyl (–OH), carbonyl (C=O), and aromatic C=C stretching—functional groups commonly found in quercetin and other bioactive compounds.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1 Kementerian Pertanian Direktorat Jenderal Perkebunan. Buku Statistik Perkebunan 2020-2022 [Internet]. Jakarta: Kementerian Pertanian; 2024 [cited 2024 Mar 22]. Available from: https://ditjenbun.pertanian.go.id/?publikasi=buku-statistik-perkebunan-2020-2022
2 S. R. Dewi, L. A. Stevens, A. E. Pearson, R. Ferrari, D. J. Irvine, and E. R. Binner, Investigating the role of solvent type and microwave selective heating on the extraction of phenolic compounds from cacao (Theobroma cacao L.) pod husk, Food Bioprod. Process. 134 (2022) 210-222.
3 I. M. Meraz-Pérez et al., The Moniliophthora perniciosa – Cacao pod pathosystem: Structural and activated defense strategies against disease establishment, Physiol. Mol. Plant Pathol. 115 (2021) 101656.
4 A. S. A. El-Sayed and G. S. Ali, Aspergillus flavipes is a novel efficient biocontrol agent of Phytophthora parasitica, Biological control 140 (2020) 104072.
5 M. Kamelia dan and P. H. Biologi Fakultas Tarbiyah Dan KeguruanUniversitas Islam Negeri Raden Intan LampungJl Endro Suratmin Sukarame-Bandar Lampung, Pemanfaatan kulit buah kakao fermentasi sebagai alternatif bahan pakan nabati serta pengaruhnya terhadap pertumbuhan ternak entok (Cairina muschata), Biosfer : J. Tadris Biol. 8(1) (2017) 66-77.
6 R. Martínez, P. Torres, M. A. Meneses, J. G. Figueroa, J. A. Pérez-Álvarez, and M. Viuda-Martos, Chemical, technological and in vitro antioxidant properties of cocoa (Theobroma cacao L.) co-products, Food Research International, Food Res. Int. 49(1) (2012) 39-45.
7 R. Campos-Vega, K. H. Nieto-Figueroa, and B. D. Oomah, Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds, Trends Food Sci Technol, Trends Food Sci. Technol. 81 (2018) 172-184.
8 L. C. Vriesmann, R. D. de Mello Castanho Amboni, and C. L. De Oliveira Petkowicz, Cacao pod husks (Theobroma cacao L.): Composition and hot-water-soluble pectins, Ind. Crops Prod. 34(1) (2011) 1173-1181.
9 F. A. González-Alejo, J. Barajas-Fernández, M. de los Á. Olán-Acosta, L. M. Lagunes-Gálvez, and P. García-Alamilla, Supercritical Fluid Extraction of Fat and Caffeine with Theobromine Retention in the Cocoa Shell, Processes 7(6) (2019) 385.
10 L. Valadez-Carmona et al., Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.), Innov. Food Sci. Emerg. Technol. 41 (2017) 378-386.
11 J. Xiao, Dietary flavonoid aglycones and their glycosides: Which show better biological significance?, Crit. Rev. Food Sci. Nutr. 57(9) (2017) 1874-1905.
12 E. L. Smith, A. P. Abbott, and K. S. Ryder, Deep Eutectic Solvents (DESs) and Their Applications, Chem. Rev. 114(21) (2014) 11060-11082.
13 X. Tang et al., Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents, ChemSusChem 10(13) (2017) 2696-2706.
14 Q. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jérôme, Deep eutectic solvents: syntheses, properties and applications, Chemical Society Reviews 41 (21) (2012) 7108-7146.
15 M. Francisco, A. Van Den Bruinhorst, and M. C. Kroon, New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing, Green chemistry 14 (8) (2012) 2153-2157.
16 C. Fanali et al., Choline Chloride–Lactic Acid-Based NADES As an Extraction Medium in a Response Surface Methodology-Optimized Method for the Extraction of Phenolic Compounds from Hazelnut Skin, Molecules 26(9) (2021) 2652.
17 A. Buci?-Koji?, H. Sovová, M. Planini?, and S. Tomas, Temperature-dependent kinetics of grape seed phenolic compounds extraction: Experiment and model, Food chemistry 136(3-4) (2013) 1136-1140.
18 V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Academic press 299 (1999) 152-178.
19 M. Blasa, M. Candiracci, A. Accorsi, M. P. Piacentini, M. C. Albertini, and E. Piatti, “Raw Millefiori honey is packed full of antioxidants, Food chemistry 97(2) (2006) 217-222.
20 Y. S. Ho, H. A. Harouna-Oumarou, H. Fauduet, and C. Porte, Kinetics and model building of leaching of water-soluble compounds of Tilia sapwood, Sep. Purif. Technol. 45.3 (2005) 169-173.
21 Z. Reddad, C. Gerente, Y. Andres, and P. Le Cloirec, Adsorption of several metal ions onto a low-cost biosorbent: Kinetic and equilibrium studies, Environmental Sci. Technol. 36(9) (2002): 2067-2073.
22 Y. S. Ho and G. McKay, Pseudo-second order model for sorption processes, Process biochemistry 34(5) (1999) 451-465.
23 M. Peleg, An Empirical Model for the Description of Moisture Sorption Curves, J Food Sci. 53.4 (1988) 1216-1217.
24 C. Niamnuy, M. Charoenchaitrakool, P. Mayachiew, and S. Devahastin, Bioactive Compounds and Bioactivities of Centella asiatica (L.) Urban Prepared by Different Drying Methods and Conditions, Drying Technology 31(16) (2013) 2007-2015.
25 E. Benítez-Correa, J. M. Bastías-Montes, S. Acuña-Nelson, and O. Muñoz-Fariña, Effect of choline chloride-based deep eutectic solvents on polyphenols extraction from cocoa (Theobroma cacao L.) bean shells and antioxidant activity of extracts, Curr. Res. Food Sci. 7 (2023): 100614.
26 M. Vilková, J. P?otka-Wasylka, and V. Andruch, The role of water in deep eutectic solvent-base extraction, J. Mol. Liq. 304 (2020): 112747.
27 C. H. Lau, L. S. Chua, C. T. Lee, and R. Aziz, Optimization and Kinetic Modeling of Rosmarinic Acid Extraction from Orthosiphon stamineus, Curr. Bioact. Compd. 10(4) (2014) 271-285.
28 E. R. Baümler, G. H. Crapiste, and A. A. Carelli, Solvent extraction: Kinetic study of major and minor compounds, J. Am. Oil Chem. Soc. 87(12) (2010) 1489-1495.
29 N. N. M. Phuong, T. T. Le, M. Q. Dang, J. Van Camp, and K. Raes, Selection of extraction conditions of phenolic compounds from rambutan (Nephelium lappaceum L.) peel, Food Bioprod. Process. 122 (2020) 222-229.
30 M. Irakli, P. Chatzopoulou, and L. Ekateriniadou, Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities, Ind Crops Prod 124 (2018) 382-388.
31 C. S. Dzah et al., The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review, Food bioscience 35 (2020) 100547.
32 P. Mulyono, A. S. Yuzki, M. D. Sari, and N. R. E. Putri, Extraction of Flavonoids from Merremia mammosa Using Ethanol Solvent in a Fixed-Bed Column, ASEAN J. Chem 22 (1) (2022) 105-112.
33 A. Mindaryani, E. Rahayuningsih, A. Zahra, and E. E. K. Wardani, Mass Transfer of Natural Dye Extraction and the Degradation Rate, ASEAN J. Chem 23(3) (2023): 400-408.
34 M. Irsal, M. Yusuf, M. T. Al Hayah, A. A. Ma’Ruf, M. R. Mahmud, and S. N. Rahayu, Ultrasonic - assisted extraction and microencapsulation of bioactive compound from pigeon pea seed, Bull. Pharm. Sci. 46(1) (2023) 51-62.
35 D. Tungmunnithum, S. Drouet, J. M. Lorenzo, and C. Hano, Green extraction of antioxidant flavonoids from pigeon pea (Cajanus Cajan (L.) Millsp.) seeds and its antioxidant potentials using ultrasound-assisted methodology, Molecules 26(24) (2021) 7557.
36 A. Altemimi, N. Lakhssassi, A. Baharlouei, D. G. Watson, and D. A. Lightfoot, Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts, Plants 6(4) (2017) 42.
37 P. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. Elsevier, 2017.
38 R. Kaparthi and K. S. Chari, Solubilities of vegetable oils in aqueous ethanol and ethanol-hexane mixtures, J Am. Oil. Chem. Soc. 36(2) (1959) 77-80.
39 N. Y. Lee, M. A. C. Yunus, Z. Idham, M. S. H. Ruslan, A. H. A. Aziz, and N. Irwansyah, Extraction and identification of bioactive compounds from agarwood leaves, IOP Conference Series: Materials Science and Engineering. Vol. 162. No. 1. IOP Publishing, 2016.
40 M. Palencia, Functional transformation of Fourier-transform mid-infrared spectrum for improving spectral specificity by simple algorithm based on wavelet-like functions, J. Adv. Res. 14 (2018) 53-62.
41 K. Buckley and A. G. Ryder, Applications of Raman Spectroscopy in Biopharmaceutical Manufacturing: A Short Review, Appl. Spectrosc. 71(6) (2017) 1085-1116.
42 G. Nisini et al., Nanoscale Surface-Enhanced Raman Spectroscopy Investigation of a Polyphenol-Based Plasmonic Nanovector, Nanomaterials 13(3) (2023) 377.
43 M. Krysa, M. Szyma?ska-Chargot, and A. Zdunek, FT-IR and FT-Raman fingerprints of flavonoids – A review, Food chem. 393 (2022) 133430.