Microwave Absorption Performance of La0.7Sr0.3MnO3/AC Composite Material Based on Activated Carbon from Gnetum gnemon Seed Shell
Main Article Content
Abstract
The 5G internet network has been proven to facilitate daily life for people and render electronic devices such as smartphones as an integral component of people's daily routine. However, in conjunction with the ease of use, there is an issue of electromagnetic radiation. To cope with this issue, magnetic and dielectric composite microwave absorber materials have been undertaken. To address this, we investigated the limitations of activated carbon composite material from Gnetum gnemon seed shells (AC) on the microwave absorption ability of (La0.7Sr0.3MnO3)1-y/(AC)y. The composite material (La0.7Sr0.3MnO3)1-y/(AC)y (y = 0; 0.3; 0.5; 0.7) was synthesized through a stirring process with a 96% ethanol catalyst using La0.7Sr0.3MnO3 synthesized by sol-gel method and activated carbon material from Gnetum gnemon seed shell (AC) synthesized by chemical activation method. The XRD and SEM characterizations indicated a single-phase structure, with smaller crystals and particles that were uniformly distributed throughout the composite sample. The presence of activated carbon grains from Gnetum gnemon seed shells (AC) were observed between the La0.7Sr0.3MnO3 grains in the composite sample. The EDS results confirmed the material’s purity. VNA characterization demonstrated that (La0.7Sr0.3MnO3)1-y/(AC)y was capable of producing two reflection loss troughs with the largest absorption percentages recorded at 82.99% and 85.82% respectively within the frequency range of 8 – 12 GHz. This research highlights the significance of controlled composite composition in enhancing microwave absorption capability, particularly in perovskite-based composites with biomass-activated carbon, which holds a considerable promise for applications in electromagnetic wave attenuation and absorption technologies.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. L. Cui, X. Han, F. Wang, H. Zhao, and Y. Du, “A review on recent advances in carbon-based dielectric system for microwave absorption,” Jun. 01, 2021.
3. S. Zhang, Z. Jia, B. Cheng, Z. Zhao, F. Lu, and G. Wu, “Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review,” Adv Compos Hybrid Mater, vol. 5, no. 3, pp. 2440–2460, Sep. 2022.
4. H. Soleimani, J. Y. Yusuf, H. Soleimani, L. K. Chuan, and M. Sabet, “Banana-Peel Derived Activated Carbon for Microwave Absorption at X-Band Frequency,” Synthesis and Sintering, vol. 2, no. 3, pp. 120–124, Sep. 2022.
5. R. I. Admi, S. A. Saptari, A. Tjahjono, I. N. Rahman, and W. A. Adi, “Synthesis and characterization microwave absorber properties of La0.7(Ca1-xSrx)0.3MnO3 prepared by Sol-Gel method,” J Phys Conf Ser, vol. 1816, no. 1, pp. 1–7, Mar. 2021.
6. R. A. Regia, R. A. Lestari, N. F. As’ad, and R. Zulkarnain, “Analisis Paparan Radiasi Elektromagnetik di Jaringan Distribusi 20 KV PT PLN (Persero) Unit Pelaksana Pelayanan Pelanggan (UP3) Payakumbuh,” Jurnal Ilmu Lingkungan, vol. 21, no. 4, pp. 755–765, Sep. 2023.
7. L. Wang et al., “Recent progress of microwave absorption microspheres by magnetic-dielectric synergy,” 2021, Royal Society of Chemistry.
8. B. Nursanni, K. P. Putra, and G. Nastiti, “Sintesis dan Karakterisasi Penyerapan Gelombang Mikro pada Komposit PANi-Barium Heksaferrit Tersubstitusi Mn dan Ti-CFO,” Jurnal Pendidikan dan Teknologi Otomotif, vol. 1, no. 1, 2021.
9. S. Sugiantoro, D. Wisnu, and A. Adi, “Karakterisasi Termal Bahan Magnetik Sistem La1-xBaxMnO3 (0
11. T. D. Thanh et al., “Magnetic and microwave absorbing properties of La0.7Sr0.3MnO3 nanoparticles,” AIP Adv, vol. 12, no. 3, Mar. 2022.
12. E. Kurniawan, Z. Ginting, R. Dewi, and A. Penelitian Pembuatan Biopelet, “Pemanfaatan Limbah Cangkang Biji Melinjo (Gnetum Gnemon) Sebagai Bahan Bakar Terbarukan dalam Pembuatan Biopelet,” Chemical Engineering Journal Storage, vol. 2, no. 1, pp. 23–39, 2022.
13. E. Taer, L. Pratiwi, W. Sinta Mustika, and R. Taslim, Three-dimensional pore structure of activated carbon monolithic derived from hierarchically bamboo stem for supercapacitor application, Communications in Science and Technology. 5 (2020) 22–30.
14. E. S. Zulkarnain, “Inventarisasi dan Karakterisasi Melinjo (Gnetum Gnemon) Di Kota Solok,” Menara Ilmu, vol. 15, no. 2, pp. 29–36, 2021.
15. Listiawati, N. Tri Yulvia, D. Permata Sari, N. Handayani, A. Faqih Robbani, and Y. Muluk, “Pemanfaatan Limbah Kulit Buah Melinjo (Gnetum Gnemon L) Menjadi Produk Olahan Keripik Kulit Buah Melinjo,” Batara Wisnu Journal: Indonesian Journal of Community Services, vol. 3, no. 3, pp. 540–548, Dec. 2023.
16. A. Mulyanto, E. Mawarsih, and R. Puspita Dewi, “Pengaruh Variasi Konsentrasi Perekat Terhadap Analisis Uji Nilai Kalor, Laju Pembakaran, Kadar Air, dan Kadar Abu Pada Briket Cangkang Biji Melinjo Sebagai Bahan Bakar Alternatif,” in Prosiding Seminar Nasional Riset Teknologi Terapan, 2023, pp. 1–6.
17. S. F. Ayuningsih, N. Nurbaeti, and J. Gunawijaya, “Memorable Tourist Experience: Kunjungan Wisata ke Sentra Produksi Emping Melinjo Sebagai Daya Tarik Wisata Heritage,” Jurnal Hospitality dan Pariwisata, vol. 9, no. 1, pp. 49–57, Mar. 2023.
18. T. Akbari, F. Panjaitan, and F. Dwirani, “Analisis Kelayakan Teknis dan Ekonomi Pengolahan Limbah Cangkang Melinjo (Gnetum gnemon) Sebagai Briket,” Jurnal Lingkungan dan Sumberdaya Alam (JURNALIS), vol. 5, no. 2, pp. 132–146, Oct. 2022.
19. Slamet, Yuliusman, A. Dwijayanti, and S. Kartika, “Characteristics of Activated Carbon from Melinjo Shells Composed of TiO2 Nanoparticles,” in Journal of Physics: Conference Series, Institute of Physics Publishing, 2020.
20. A. Dwijayanti, S. Kartika, and Yuliusman, “The effect of carbonization temperature and activator to the characteristics of melinjo shell (Gnetum genom) activated carbon,” in AIP Conference Proceedings, American Institute of Physics Inc., Nov. 2019, pp. 1–6.
21. T. Rahman, M. A. Fadhlulloh, A. Bayu, D. Nandiyanto, and A. Mudzakir, “Review: Sintesis Karbon Nanopartikel,” Jurnal Integrasi Proses, vol. 5, no. 3, pp. 120–131, 2015.
22. C. Y. Tsay, R. B. Yang, D. S. Hung, Y. H. Hung, Y. D. Yao, and C. K. Lin, “Investigation on electromagnetic and microwave absorbing properties of La0.7Sr0.3MnO3-?/carbon nanotube composites,” J Appl Phys, vol. 107, no. 9, May 2010.
23. S. Dai, B. Quan, B. Zhang, X. Liang, and G. Ji, “Interfacial polarizations induced by incorporating traditional perovskites into reduced graphene oxide (RGO) for strong microwave response,” Dalton Transactions, vol. 48, no. 7, pp. 2359–2366, 2019.
24. Y. Fang, H. Li, M. N. Akhtar, and L. Shi, “High-efficiency microwave absorber based on carbon [email protected]@NiO composite for X-band applications,” Ceram Int, vol. 47, no. 14, pp. 20438–20446, Jul. 2021.
25. P. Negi, A. K. Chhantyal, A. K. Dixit, S. Kumar, and A. Kumar, “Activated carbon derived from mango leaves as an enhanced microwave absorbing material,” Sustainable Materials and Technologies, vol. 27, Apr. 2021.
26. M. Ishaq Nuras, S. Ahmiatri Saptari, A. Tjahjono, D. Pamungkas Priambodo, and A. Haiqal, “Synthesis and Characterization of Activated Carbon From Biomass Waste as A Microwave Absorber Material,” Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics, vol. 7, no. 1, pp. 12–32, Dec. 2024.
27. M. Al-Rabi, A. Tjahjono, and S. A. Saptari, “Analisis Fasa, Struktur Kristal dan Sifat Kemagnetan Material Komposit Berbasis Nd0,6Sr0,4MnO3/Fe2O3,” Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics, vol. 3, no. 2, pp. 114–122, Dec. 2020.
28. H. Ahmad et al., “Stealth technology: Methods and composite materials - A review,” Polym Compos, vol. 40, no. 12, pp. 4457–4472, Dec. 2019.
29. H. Wang et al., “Biomass carbon derived from pine nut shells decorated with NiO nanoflakes for enhanced microwave absorption properties,” RSC Adv, vol. 9, no. 16, pp. 9126–9135, 2019.
30. H. Guan et al., “Microwave absorption performance of Ni(OH)2 decorating biomass carbon composites from Jackfruit peel,” Appl Surf Sci, vol. 447, pp. 261–268, Jul. 2018.
31. A. Ali, Y. W. Chiang, and R. M. Santos, “X-Ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions,” Minerals, vol. 12, no. 2, Feb. 2022.
32. A. F. Gualtieri et al., “Quantitative phase analysis using the Rietveld method: Towards a procedure for checking the reliability and quality of the results,” Periodico di Mineralogia, vol. 88, no. 2, pp. 147–151, 2019.
33. S. J. Hibble, S. P. Cooper, A. C. Hannon, I. D. Fawcett, and M. Greenblatt, “Local distortions in the colossal magnetoresistive manganates La0.70Ca0.30MnO3, La0.80Ca0.20MnO3 and La0.70Sr0.30MnO3 revealed by total neutron diffraction,” J. Phys.: Condens. Matter, vol. 11, no. 47, pp. 9221–9238, 1999.
34. R. Martínez, E. Cruz, S. Zografos, J. Soto, R. Palai, and C. Cabrera, Integrating perovskite materials and bamboo-based activated carbon for electrochemical energy storage in hybrid supercapacitors, J Energy Storage. 81 (2024) 110527.
35. A. R. Heiba, M. M. Omran, R. M. Abou Shahba, A. S. Dhmees, F. A.Taher, and E. El Sawy, Compositing LaSrMnO3 perovskite and graphene oxide nanoribbons for highly stable asymmetric electrochemical supercapacitors, Mater Sci Energy Technol. 8 (2025) 82–95.
36. M. Doumeng et al., A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman
spectroscopy techniques, Polym Test. 93 (2021) 106878.
37. C. F. Holder and R. E. Schaak, “Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials,” Jul. 23, 2019, American Chemical Society.
38. H. Li, Synthesis of CMR manganites and ordering phenomena in complex transition metal oxides, vol. 4. Jülich: Forschungszentrum Jülich, 2008.
39. S. A. Saptari, J. Q. Syarifuddin, A. Tjahjono, H. Hadiyawarman, and G. E. Timuda, “Enhancement of microwave absorption ability of Nd0.67Sr0.33Mn1-xNix/2Tix/2O3 (x?=?0, 0.03, and 0.06),” Emergent Mater, vol. 7, no. 6, pp. 2877–2890, Dec. 2024.
40. Z. J. Razi, S. A. Sebt, and A. Khajehnezhad, “Magnetoresistance temperature dependence of LSMO and LBMO perovskite manganites,” Journal of Theoretical and Applied Physics, vol. 12, no. 4, pp. 243–248, Dec. 2018.
41. U. Ulusoy, “A Review of Particle Shape Effects on Material Properties for Various Engineering Applications: From Macro to Nanoscale,” Jan. 01, 2023.
42. C. T. Rueden et al., “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics, vol. 18, no. 1, Nov. 2017.
43. S. Goel, A. Garg, H. B. Baskey, M. K. Pandey, and S. Tyagi, “Studies on dielectric and magnetic properties of barium hexaferrite and bio-waste derived activated carbon composites for X-band microwave absorption,” J Alloys Compd, vol. 875, Sep. 2021.
44. Y. Akinay, U. Gunes, B. Çolak, and T. Cetin, “Recent progress of electromagnetic wave absorbers: A systematic review and bibliometric approach,” ChemPhysMater, vol. 2, no. 3, pp. 197–206, 2023.
45. F. A. Kurniawan, S. A. Saptari, A. Tjahjono, and D. S. Khaerudini, “Analysis Perovskite Material Absorber Based on Nd0.6Sr0.4MnxFe1/2(1-x)Ti1/2(1-x)O3 (x = 0, 0.1, 0.2) by Sol-Gel Method,” Journal of Physics: Theories and Applications, vol. 6, no. 1, p. 55, Mar. 2022.
46. X. Yang et al., MOFs-Derived Three-Phase Microspheres: Morphology Preservation and Electromagnetic Wave Absorption, Molecules. 27 (2022) 15.
47. K. Yusro and M. Zainuri, Karakterisasi Material Penyerap Gelombang Radar Berbahan Dasar Karbon Aktif Kulit Singkong dan Barium M-Heksaferit, Jurnal Sains dan Seni ITS. 4 (2015) 1–4.
48. Z. Qu et al., “Enhanced electromagnetic wave absorption properties of ultrathin MnO2 nanosheet-decorated spherical flower-shaped carbonyl iron powder,” Molecules, vol. 27, no. 1, Jan. 2022.
