Isotherm adsorption characteristics of carbon microparticles prepared from pineapple peel waste

Main Article Content

Asep Bayu Dani Nandiyanto
Gabriela Chelvina Santiuly Girsang
Rina Maryanti
Risti Ragadhita
Sri Anggraeni
Fajar Miraz Fauzi
Putri Sakinah
Asita Puji Astuti
Dian Usdiyana
Meli Fiandini
Mauseni Wantika Dewi
Abdulkareem Sh. Mahdi Al-Obaidi

Abstract

The objective of this study was to investigate isotherm adsorption of carbon microparticles from pineapple peel waste. Carbon microparticles were prepared by carbonizing pineapple peel waste at 215-250°C and grinding using a saw-milling process. To investigate adsorption properties of carbon microparticles, experiments were done by evaluating adsorption of curcumin (as a model of adsorbate) in the ambient temperature and pressure under constant pH condition. To confirm the adsorption characteristics, carbon particles with different sizes (i.e., 100, 125, and 200 ?m) were tested, and the adsorption results were compared with several standard isotherm adsorption models: Langmuir, Freundlich, Temkin, and Dubinin- Radushkevich. To support the adsorption analysis, several characterizations (i.e., optical microscope, sieve test, and Fourier transform infrared analysis) were conducted. The adsorption test showed that the adsorption profile is fit to the Freundlich model for all variations, indicating the multilayer adsorption process on heterogeneous surfaces and interactions between adsorbate molecules. The results from other isotherm models also confirmed that the adsorption process occurs physically via Van der Waals force in binding adsorbate on the surface of adsorbent.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nandiyanto, A. B. D., Santiuly Girsang, G. C., Maryanti, R., Ragadhita, R., Anggraeni, S., Fauzi, F. M., Sakinah, P., Astuti, A. P., Usdiyana, D., Fiandini, M., Dewi, M. W., & Al-Obaidi, A. S. M. (2020). Isotherm adsorption characteristics of carbon microparticles prepared from pineapple peel waste. Communications in Science and Technology, 5(1), 31-39. https://doi.org/10.21924/cst.5.1.2020.176
Section
Articles

References

1. F. Yan, Z. Sun, H. Zhang, X. Sun, Y. Jiang and Z. Bai, The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review, Microchim. Acta 186 (2019) 546-583.
2. L. A. T. Garcia, L. Boff, C. R. M. Barardi and M. Nagl, Inactivation of adenovirus in water by natural and synthetic compounds, Food Environ. Virol. 11 (2019) 157-166.
3. H. K. Sharma, C. Xu and W. Qin, Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview, Waste Biomass Valori. 10 (2019) 235-251.
4. C. Bohringer, J. C. Carbone and T. F. Rutherford, Embodied carbon tariffs, Scandinavian J. Econ. 120 (2018) 183-210.
5. A. H. Jawad, A. M. Kadhum and Y. S. Ngoh, Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: kinetics, equilibrium and thermodynamics studies, Desalin. Water Treat. 109 (2018) 231-240.
6. A. Bhatnagar, E. Kumar, A. K. Minocha, B. H. Jeon, H. Song,& Seo, Y.C. Song, Removal of anionic dyes from water using Citrus limonum (lemon) peel: equilibrium studies and kinetic modeling, Sep. Sci. Technol. 44 (2009) 316-334.
7. B. H. Hameed, Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent, J. Hazard. Mater. 162 (2009) 344-350.
8. Z. Haddadian, M. A. Shavandi, Z. Z. Abidin, A. Fakhrul-razi and M. H. S. Ismail, Removal methyl orange from aqueous solutions using dragon fruit (Hylocereusundatus) foliage, Chem. Sci. Trans. 2 (2013) 900-910.
9. A. B. D. Nandiyanto, Z. A. Putra, R. Andika, M. R. Bilad, T. Kurniawan, R. Zulhijah and I. Hamidah, Porous activated carbon particles from rice straw waste and their adsorption properties, J. Eng. Sci. Technol. 12 (2017) 1-11.
10. A. Sukmafitri, R. Ragadhita, A. B. D. Nandiyanto, W. C. Nugraha, and B. Mulyanti, Effect of ph condition on the production of well-dispersed carbon nanoparticles from rice husks, J. Eng. Sci. Technol. 15 (2020) 991–1000.
11. B. Wibowo, N. A. Masrurah, Y. U. Kasanah, F. Trapsilawati and M. A. Ilhami, Toward a taxonomy of micro and small manufacturing enterprises. Commun. Sci. Technol. 4 (2019) 74-80.
12. R. Ragadhita, A. B. D. Nandiyanto, W. C. Nugraha and A. Mudzakir, Adsorption isotherm of mesopore-free submicron silica particles from rice husk, J. Eng. Sci. Technol. 14 (2019) 2052-2062.
13. M. Fiandini, R. Ragadhita, A. B. D. Nandiyanto and W. C. Nugraha, Adsorption characteristics of submicron porous carbon particles prepared from rice husk, J. Eng. Sci. Technol. 15 (2020) 022-031.
14. B. Hub, K. Wang, L. Wu, S. H. Yu, M. Antonietti and M. M. Titirici, Engineering carbon materials from the hydrothermal carbonization process of biomass, Adv. Mater. 22 (2010) 813-828.
15. W. W. Ingwersen, Life cycle assessment of fresh pineapple from Costa Rica. J. Clean. Prod. 35 (2012) 152-163.
16. A. B. D. Nandiyanto, D. Sofiani, N. Permatasari, T. N. Sucahya, A. S. Wiryani, A. Purnamasari, and E. C. Prima, Photodecomposition profile of organic material during the partial solar eclipse of 9 march 2016 and its correlation with organic material concentration and photocatalyst amount. Indones. J. Sci. Technol. 1 (2016) 132-155.
17. A. B. D. Nandiyanto, A.S. Wiryani, A. Rusli, A. Purnamasari, A.G. Abdullah, I. Widiaty and R. Hurriyati, Extraction of curcumin pigment from Indonesian local turmeric with its infrared spectra and thermal decomposition properties. IOP Conf. Series: Mater. Sci. Eng. 180 (2017) 012136.
18. A. B. D. Nandiyanto, S. G. Kim, F. Iskandar and K. Okuyama, Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters, Micropor. Mesopor. Mat. 120 (2009) 447-453.
19. G. J. Romero, J. R. Peralta-Videa, E. Rodr?guez, S. L. Ramirez and J. L. Gardea-Torresdey, Determination of thermodynamic parameters of Cr (VI) adsorption from aqueous solution onto Agave lechuguilla biomass, J. Chem. Thermodyn. 37 (2005) 343-347.
20. A. O. Dada, A. P. Olalekan, A. M. Olatunya and O. J. I. J. C. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, J. Appl. Chem. 3 (2012) 38-45.
21. I. A.W. Tan, A. L. Ahmad and B. H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, J. Hazard. Mat. 154 (2008) 337-346.
22. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361-1403.
23. E. Voudrias, K. Fytianos and E. Bozani, Sorption–desorption isotherms of dyes from aqueous solutions and wastewaters with different sorbent materials, Global NEST J. 4 (2002) 75-83.
24. H. K. Chung, W. H. Kim, J. Park, J. Cho, T.Y. Jeong and P.K. Park, Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorben, J. Ind. Eng. Chem. 28 (2015) 241-246.
25. N. Ayawei, A. N. Ebelegi and D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem. 2017 (2017) 1-11.
26. A. Gunay, E. Arslankaya and I. Tosun, Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics, J. Hazard. Mat. 146 (2007) 362-371.
27. A. B. D. Nandiyanto, R. Andika, M. Aziz and L.S. Riza, Working volume and milling time on the product size/morphology, product yield, and electricity consumption in the ball-milling process of organic material. Indones. J. Sci. Technol. 3 (2018) 82-94.
28. A. B. D. Nandiyanto, R. Oktiani and R. Ragadhita, How to read and interpret FTIR spectroscope of organic materia, Indones. J. Sci. Technol.. 4 (2019) 97-118.
29. A. H. Berger and A. S. Bhown, Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption, Energy Procedia. 4 (2011) 562-567.
30. I. N. Najm, V.L. Snoeyink, M.T. Suidan, C. H. Lee and Y. Richard, Effect of particle size and background natural organics on the adsorption efficiency of PAC, J. Am. Water Works Ass. 82 ( 1990) 65–72.
31. T. Tahara, Y. Imajyo, A. B. D. Nandiyanto, T. Ogi, T. Iwaki and K. Okuyama, Low-energy bead-milling dispersions of rod-type titania nanoparticles and their optical properties. Adv. Powder Technol, 25 (2014) 1492-1499.