Material Properties Extraction of Mango (Mangifera indica) Leaves at Ka-Band Using a Waveguide Measurement System

Main Article Content

Hana Arisesa
Sevia Mahdaliza Idrus
Farabi Iqbal
M.F.L Abdullah
Yusuf Nur Wijayanto
Purwoko Adhi

Abstract

This study investigates the material properties (permittivity, dissipation factor, and conductivity) of mango leaves (Mangifera indica) over the 26–40 GHz Ka-band frequency based on a waveguide measurement system with a vector network analyzer instrument to capture the data. The data analysis employs the Nicolson-Ross-Weir method to extract material properties. The result reveals that the real part of permittivity decreases from about 11.0 to 5.0 with increasing frequency. Meanwhile, the imaginary part of permittivity remains low and stable, suggesting minimal absorption losses. The dissipation factor is consistently below 0.05 along the band. Effective conductivity ranges from 0.2 to 0.6 S/m, with a slight increase at higher frequencies. These findings suggest that at Ka‐band frequency, signal degradation through mango foliage is primarily driven by dispersion and scattering rather than strong dielectric absorption. The results provide essential information for improving foliage attenuation models and designing 5G and 6G communication systems in tropical regions. This study provides a reliable Ka-band dielectric dataset for mango leaves that improves the accuracy of tropical foliage-attenuation models and supports more robust 5G/6G link design and deployment in vegetation-dense environments.

Downloads

Download data is not yet available.

Article Details

How to Cite
Arisesa, H., Idrus, S. M., Iqbal, F., Abdullah, M., Wijayanto, Y. N., & Adhi, P. (2025). Material Properties Extraction of Mango (Mangifera indica) Leaves at Ka-Band Using a Waveguide Measurement System . Communications in Science and Technology, 10(2), 292–301. https://doi.org/10.21924/cst.10.2.2025.1768
Section
Articles

References

1. A. L. Imoize, O, Adedeji, N. Tandiya, and S. Shetty, 6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap. Sensors, 21 (2021) 1709-1767.
2. A. Yazar, S. D. Tusha, and H. Arslan, 6G Vision: An Ultra-Flexible Perspective. ITU J. Future. and Evolving Technologies, 1 (2020).
3. M, Alsabah, M. A. Naser, B. M. Mahmmoed, S. H. Abdulhussain, M. R. Eissa, and A. Al-Baidani, 6G Wireless Communications Networks: A Comprehensive Survey. IEEE Access. 9 (2021) 148191-148243.
4. S.T. Rappaport, et al., Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access. 7 (2019) 78729-78757.
5. 5GMF, 5GMF White Paper: 5G Enhancement with millimeter wave deployment, 3, Editor. (2024).
6. A.G. Siles, Riera M.J., and P. Garcia-Del-Pino, Atmospheric Attenuation in Wireless Communication Systems at Millimeter and THz Frequencies [Wireless Corner]. IEEE Antennas and Propag. Mag. 57 (2015) 48-61.
7. S. Salous, et al., Millimeter-Wave Propagation: Characterization and modeling toward fifth-generation systems. [Wireless Corner]. IEEE Antennas and Propag. Mag. 58 (2016) 115-127.
8. C. Zang, Z, Ma, J, Wang, Y, Yao, X, Han, and X, He, Measurement, data analysis and modeling of electromagnetic wave propagation gain in a typical vegetation environment. PLOS ONE. 18 (2023) 1-24.
9. J. Isabona, A. L. Imoize, S. Ojo, C. C. Lee, and C. T. Li. Atmospheric Propagation Modelling for Terrestrial Radio Frequency Communication Links in a Tropical Wet and Dry Savanna Climate. Information, 13 (2022).
10. J. A. Azevedo, and F. E. Santos, A model to estimate the path loss in areas with foliage of trees. AEU - Int. J. Electron. Commun, 71 (2017) 157-161.
11. F.T. Ulaby, , R.K. Moore, and A.K. Fung, Microwave remote sensing: active and passive, Vol. III: From Theory to Application. (1986): Artech House, Inc.
12. N. Chitraningrum, et al., Microwave absorption properties of porous activated carbon-based palm oil empty fruit bunch. AIP Adv., 12 (2022).
13. N. Chitraningrum, et al., Preparation and characterization of porous carbon-based oil palm empty fruit bunch as a candidate material for an electromagnetic waves absorber application. AIP Conf. Proc, 2024. 2973 (2024) 060012.
14. H. Ma'rufah, H.L. Nugroho, and S. Sukirno, Effectiveness extract of Crataeva nurvala leaves as insecticide against Spodoptera litura. Commun. Sci. Technol, 9 (2024) 310-321.
15. D.P. Chauhan, H.D. Gadani, and A.V. Rana, Dielectric properties of tobacco and tomato plant leaves over a broad frequency range. J. Microwave Power Electromagn. Energy, 57 (2023) 278-289.
16. B. Itolikar, A. and M.L. Kurtadikar, Microwave Dielectric Properties and Emissivity Estimation of Freshly Cut Banana Leaves at 5 GHz. Int. J. Adv Remote Sensing and GIS, 5 (2017).
17. M.S. Venkatesh and G.S.V. Raghavan, An overview of dielectric properties measuring techniques. Can. Biosyst. Eng., (2005).
18. T. Mosavirik, M.S., V. Nayyeri, S. H. Mirjahanmardi and O. M. Ramahi, Permittivity Characterization of Dispersive Materials Using Power Measurements. IEEE Trans. Instrum. Meas, 70 (2021).
19. N. Billings, A. Birjiniuk, T. S. Samad, P. S. Doyle, and K. Ribbeck, Material properties of biofilms—a review of methods for understanding permeability and mechanics. Rep. Prog. Phys, 2015. 78 (2015) 036601.
20. F. M. Al-Oqla, S. M. Sapuan, T. Anwer, M. Jawaid, and M. E. Hoque, Natural fiber reinforced conductive polymer composites as functional materials: A review. Synth. Met., 206 (2015) 42-54.
21. R. Testa, S. Tudisca, G. Schifani, A. M. D. Trapani, and G. Migliore, Tropical Fruits as an Opportunity for Sustainable Development in Rural Areas: The Case of Mango in Small-Sized Sicilian Farms. Sustainability, 10 (2018).
22. S.F.P. Júnior, et al., Characterization of the Dielectric Properties of the Tommy Atkins Mango. J. Microwaves, Optoelectronics and Electromag. App., 19 (2020) 86-93.
23. S, Wang, M. Monzon, Y. Gazit, J. Tang, E. J. Mitcham, and J. W. Armstrong, Temperature-Dependent Dielectric Properties of Selected Subtropical And Tropical Fruits And Associated Insect Pests. Trans. Am. Soc. Agric. Eng, 48 (2025) 1873-1881.
24. V. C. Vanderbilt, and L. Grant, Plant Canopy Specular Reflectance Model. IEEE Trans. Geosci. Remote Sens., GE-23 (1985) 722-730.
25. S. A. R. Khatik and D. V. Ahire, Correlations of Complex Dielectric Constant of Tree Leaves with Their Chemical Properties at X-Band Frequency. Int. J. Innovative Research Sci., Eng. Tech., 6 (2017) 7-13.
26. S. Metlek, K. Kayaalp, I. B. Basyigit, A. Genc, and H. Dogan, The dielectric properties prediction of the vegetation depending on the moisture content using the deep neural network model. I. J. RF Microwave Comput. Aided Eng., 31 (2021).
27. P. Chauhan, D. H. Gadani, and V.A. Rana, Study of variation of complex permittivity of tree leaves with moisture content, over microwave frequency range. Mater. Today: Proc.., 67 (2022).
28. W. B. Weir, Automatic Measurement of Complex Dielectric Constant and Permeability at Microwave Frequencies. Proc. IEEE, 62 (1974) 33-36.
29. Y. Ye, A. Sklyuyev, C. Akyel, and P. Ciureanu. Automatic System to Measure Complex Permittivity and Permeability using Cavity Perturbation Techniques. in Instrumentation and Measurement Technology Conference-IMTC 2007. (2007).
30. A. M. Nicolson, and G.F. Ross, Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques, in IEEE Trans. Instrum. Meas. (1970).
31. A. L. D. Paula, M. C. Rezende, and J. J. Barroso. Modified Nicolson-Ross-Weir (NRW) method to retrieve the constitutive parameters of low-loss materials. in 2011 SBMO/IEEE MTT-S Int. Microwave Optoelectron Conf.. 2011. IEEE. (2011).
32. D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis , Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B, 65 (2002).
33. L. F. Chen, C. K. Ong., C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization. 2004: John Wiley & Sons Ltd.
34. B. L. Shrestha, H. C. Wood and S. Sokhansanj. Microwave Dielectric Properties of Alfalfa Leaves From 0.3 to 18 GHz. IEEE Trans. Instrum. Meas., 60 (2011).