Fabrication and Photocatalytic Performance of ZnO-Biochar Composites for Eliminating Dye Waste

Main Article Content

Desi Heltina
Danil Yoselino
Nabellia
Agustina Dumaria
Khairati Amila
Komalasari
Maria Peratenta Sembiring
Amun Amri
Zhong Tao Jiang

Abstract

The synthesis of the ZnO-biochar composite from palm kernel shell biomass waste has been accomplished through the utilization of the
solvothermal method, yielding a satisfactory outcome. The resulting composite, a combination of ZnO and biochar, has been utilized in the degradation of methylene blue waste compounds. The objective of this research is to synthesize ZnO-biochar composites from palm shells, and to determine the optimal solvothermal temperature and duration. This research was initiated with the preparation of palm shells into biochar. Subsequently, the ZnO-biochar composite was synthesized with variable solvothermal temperatures and solvothermal times. The ZnO-biochar composite was characterized using analytical techniques including SEM-EDX, FT-IR, XRD, BET and UV-vis DRS. The most effective degradation of methylene blue was exhibited by the ZnO-biochar composite sample synthesized at a solvothermal temperature of 180 ̊C and a solvothermal time of 10 hours, achieving a degradation of 88.29%. The enhanced photodegradation performance of this composite sample is attributed to its high surface area, capacity for visible light absorption, and the dimensions of the active crystals, which can account for the high performance of the ZnO-biochar composite for photocatalytic degradation.

Downloads

Download data is not yet available.

Article Details

How to Cite
Heltina, D., Yoselino, D., Nabellia, Dumaria, A., Amila, K., Komalasari, … Jiang, Z. T. (2025). Fabrication and Photocatalytic Performance of ZnO-Biochar Composites for Eliminating Dye Waste. Communications in Science and Technology, 10(2), 302–312. https://doi.org/10.21924/cst.10.2.2025.1795
Section
Articles

References

1. Wang, X. Q., S. F. Han, Q. W. Zhang, N. Zhang, dan D. D. Zhao., Photocatalytic oxidation degradation mechanism study of methylene blue dye wastewater with GR/iTO2, MATEC Web of Conferences. 238 (2018) 03006.
2. Agustania, A. A., Aktivitas Fotokatalis Nano TiO2 Terimobilisasi Membran Poliuretan dalam Reaksi Fotodegradasi Zat Warna Metilen Biru, Disertasi Doktor, UIN Ar-Raniry Fakultas Sains dan Teknologi. (2022).
3. Oladoye, Peter Olusakin, Timothy Oladiran Ajiboye, Elizabeth Oyinkansola Omotola, and Olusola Joel Oyewola., Methylene blue dye:Toxicity and potential elimination technology from wastewater, Results in Engineering. 16 (2022).
4. Miranda, J. S., N. C. A. Silva, J. J. Bassi, M. C. C. Corradini, F. A. P. Lage, D. B. Hirata, dan A. A. Mendes., Immobilization of Thermomyces lanuginosus lipase on mesoporous poly-hydroxybutyrate particles and application in alkyl esters synthesis: Isotherm, thermodynamic and mass transfer studies, Chemical Engineering Journal. 251 (2014) 392–403.
5. He, K., C. Zhao, G. Zhao, dan G. Han., Effects of pore size on the photocatalytic activity of mesoporous TiO2 prepared by a sol–gel process, Journal of Sol-Gel Science and Technology. 75 (2015) 557–563.
6. Yu, S., J. Zhou, Y. Ren, Z. Yang, M. Zhong, X. Feng, B. Su, dan Z. Lei., Excellent adsorptive–photocatalytic performance of zinc oxide and biomass-derived N,O-contained biochar nanocomposites for dyes and antibiotic removal, Chemical Engineering Journal. 451 (2023) 138959.
7. Setyawan, D., dan P. Handoko., Aktivitas katalis Cr/Zeolit dalam reaksi konversi katalitik fenol dan metil isobutil keton, Jurnal Ilmu Dasar. 4 (2003) 73–76.
8. Hidayati, U. F., A. B. Aritonang, dan L. Destiarti., TiO2-rGO Composite for Photocatalytic Decolorization of Methylene Blue Under the Visible Light Illumination, BERKALA SAINSTEK. 9 (2021) 167–173.
9. Harris, K., J. Gaskin, M. Cabrera, W. Miller, dan K. C. Das., Characterization and mineralization rates of low temperature peanut hull and pine chip biochars, Agronomy. 3 (2013) 294–312.
10. Natarajan, S., H. C. Bajaj, dan R. J. Tayade., Recent advances based on the synergetic effect of adsorption for removal of dyes from wastewater using photocatalytic process, Journal of Environmental Sciences. 65 (2018) 201–222.
11. Hameed, B. H., A. M. Din, dan A. L. Ahmad., Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies, Journal of Hazardous Materials. 141 (2007) 819–825.
12. Shrestha, P., M. K. Jha, J. Ghimire, A. R. Koirala, R. M. Shrestha, R. K. Sharma, B. Pant, M. Park, H. R. Pant., Decoration of zinc oxide nanorods into the surface of activated carbon obtained from agricultural waste for effective removal of methylene blue dye, Materials. 13 (2020) 5667.
13. Jing, H., L. Ji, Z. Wang, J. Guo, S. Lu, J. Sun, L. Cai, dan Y. Wang., Synthesis of ZnO nanoparticles loaded on biochar derived from Spartina alterniflora with superior photocatalytic degradation performance, Nanomaterials. 11 (2021) 2479.
14. Tsai, W. T., C. Y. Chang, dan S. L. Lee., Preparation and characterization of activated carbons from corn cob, Carbon. 35 (1997) 1198–1200.
15. Luo, H., S. Yu, M. Zhong, Y. Han, B. Su, dan Z. Lei., Waste biomass-assisted synthesis of TiO2 and N/O-contained graphene-like biochar composites for enhanced adsorptive and photocatalytic performances, Journal of Alloys and Compounds. 899 (2022) 163287.
16. Liew, R. K., M. Y. Chong, O. U. Osazuwa, W. L. Nam, X. Y. Phang, M. H. Su, C. K. Cheng, C. T. Chong, dan S. S. Lam., Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation, Research on Chemical Intermediates. 44 (2018) 3849–3865.
17. Hou, J., J. Yun, W. Jang, J. H. Kim, dan H. Byun., Polyacrylonitrile nanofiber membranes incorporated with large reduced graphene oxide content in situ, Journal of Materials Science. 56 (2021) 18508–18521.
18. Seal, K., H. Chaudhuri, S. Basu, M. K. Mandal, dan S. Pal., Study on effect of the solvothermal temperature on synthesis of 3D hierarchical TiO2 nanoflower and its application as photocatalyst in degradation of organic pollutants in wastewater, Arabian Journal for Science and Engineering. 46 (2021) 6315–6331.
19. Paszkiewicz-Gawron, M., A. Gołąbiewska, A. Pancielejko, W. Lisowski, J. Zwara, M. Paszkiewicz, A. Zaleska-Medynska, dan J. Łuczak., Impact of tetrazolium ionic liquid thermal decomposition in solvothermal reaction on the remarkable photocatalytic properties of TiO2 particles, Nanomaterials. 9 (2019) 744.
20. Iasya, Y. K., F. Khoerunnisa, S. S. Dwi, R. A. Putri, M. Nurhayati, U. S. Arrozi, Y. Permana, M. Handayani, W. D. Astuti, O. W. Da, dan I. Irnanda., Synergetic effect of ZnO/NiO nanocomposite on the enhancement of photocatalytic degradation efficiency of dyes molecules, Communications in Science and Technology. 10 (2025) 1–9.
21. Leichtweis, J., S. Silvestri, dan E. Carissimi., New composite of pecan nutshells biochar–ZnO for sequential removal of acid red 97 by adsorption and photocatalysis, Biomass and Bioenergy. 140 (2020) 105648.
22. Yu, S., J. Zhou, Y. Ren, Z. Yang, M. Zhong, X. Feng, B. Su, dan Z. Lei., Excellent adsorptive–photocatalytic performance of zinc oxide and biomass-derived N,O-contained biochar nanocomposites for dyes and antibiotic removal, Chemical Engineering Journal. 451 (2023) 138959.
23. Xue, B., dan Y. Zou., High photocatalytic activity of ZnO–graphene composite, Journal of Colloid and Interface Science. 529 (2018) 306–313.
24. Tian, F., R. Zhu, K. Song, M. Niu, F. Ouyang, dan G. Cao., The effects of hydrothermal temperature on the photocatalytic performance of ZnIn2S4 for hydrogen generation under visible light irradiation, Materials Research Bulletin. 70 (2015) 645–650.
25. Palharim, P. H., M. C. Caira, C. de Araújo Gusmão, B. Ramos, G. T. dos Santos, O. Rodrigues Jr., dan A. C. Teixeira., Effect of temperature and time on the hydrothermal synthesis of WO3–AgCl photocatalysts regarding photocatalytic activity, Chemical Engineering Research and Design. 188 (2022) 935–953.
26. He, K., C. Zhao, G. Zhao, dan G. Han., Effects of pore size on the photocatalytic activity of mesoporous TiO2 prepared by a sol–gel process, Journal of Sol-Gel Science and Technology. 75 (2015) 557–563.
27. Bardestani, R., G. S. Patience, dan S. Kaliaguine., Experimental methods in chemical engineering: specific surface area and pore size distribution measurements — BET, BJH, and DFT, The Canadian Journal of Chemical Engineering. 97 (2019) 2781–2791.
28. IUPAC, S. K. Sing., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and Applied Chemistry. 57 (1985) 603–619.
29. Zhang, Y., J. Zhou, X. Chen, Q. Feng, dan W. Cai., MOF-derived C-doped ZnO composites for enhanced photocatalytic performance under visible light, Journal of Alloys and Compounds. 777 (2019) 109–118.
30. Agusriyanti, S., dan P. Artsanti., Pemanfaatan Zeolit Alam Ciamis sebagai Pengemban Fotokatalis TiO2 untuk Fotodegradasi Zat Warna Rhodamin B, Jurnal Sains Dasar. 4 (2015) 92–99.
31. Linsebigler, A. L., G. Lu, dan J. T. Yates Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews. 95 (1995) 735–758.
32. Sudhakar, S., K. K. Jaiswal, S. G. Peera, dan A. P. Ramaswamy., Green synthesis of N-graphene by hydrothermal-microwave irradiation for alkaline fuel cell application, International Journal of Recent Scientific Research. 8 (2017) 19049–19053.
33. Dumbrava, A., C. Matei, A. Diacon, F. Moscalu, D. Berger., Novel ZnO-biochar nanocomposites obtained by hydrothermal method in extracts of Ulva lactuca collected from Black Sea, Ceramics International. 49 (2023) 10003–10013.
34. Anjarkusuma, D. I., Struktur, komposisi kimia, dan morfologi permukaan bahan semikonduktor paduan Sn dengan variasi lama pemanasan hasil preparasi dengan teknik Bridgman, 2017.
35. Pratiwi, P. D., Preparasi Nanomaterial Karbon Menggunakan Metode Liquid Mechanical Exfoliation Dibantu oleh Linear Alkylbenzene Sulfonate dengan Variasi Waktu Pencampuran, Skripsi S1, FMIPA UNY. 2016.
36. Bouanimba, N., N. Laid, R. Zouaghi, T. Sehili., A comparative study of the activity of TiO2 Degussa P25 and Millennium PCs in the photocatalytic degradation of bromothymol blue, International Journal of Chemical Reactor Engineering. 16 (2018).
37. Thongjamroon, S., J. Wootthikanokkhan, dan N. Poolthong., Photocatalytic performances and antifouling efficacies of alternative marine coatings derived from polymer/metal oxides (WO3@TiO2)-based composites, Catalysts. 13 (2023) 649.
38. Humadi, J., A. T. Nawaf, L. A. Khamees, Y. A. Abd-Alhussain, H. F. Muhsin, M. A. Ahmed, dan M. M. Ahmed., Development of new effective activated carbon supported alkaline adsorbent used for removal of phenolic compounds, Communications in Science and Technology. 8 (2023) 164–170.
39. Tian, F., R. Zhu, K. Song, M. Niu, F. Ouyang, dan G. Cao., The effects of hydrothermal temperature on the photocatalytic performance of ZnIn2S4 for hydrogen generation under visible light irradiation, Materials Research Bulletin. 70 (2015) 645–650.
40. ElFaham, M. M., A. M. Mostafa, dan E. A. Mwafy., The effect of reaction temperature on structural, optical and electrical properties of tunable ZnO nanoparticles synthesized by hydrothermal method, Journal of Physics and Chemistry of Solids. 154 (2021) 110089.
41. Josun, J., P. Sharma, dan V. K. Garg., Optical and structural behavior of hydrothermally synthesized ZnO nanoparticles at various temperatures with NaOH molar ratios, Results in Optics. 14 (2024) 100601.
42. Lestari, D., W. Sunarto, dan E. B. Susatyo., Preparasi Nanokomposit ZnO/TiO2 dengan Sonokimia serta Uji Aktivitasnya untuk Fotodegradasi Fenol, Indonesian Journal of Chemical Science. 1 (2012).
43. Muthirulan, P., C. N. Devi, dan M. M. Sundaram., TiO2 wrapped graphene as a high performance photocatalyst for acid orange 7 dye degradation under solar/UV light irradiations, Ceramics International. 40 (2014) 5945–5957.
44. Rini, A. S., A. H. Sitorus, Y. Rati, E. Taer, Z. Usman, dan A. A. Umar., Biosynthesis of sulfur and selenium co-doped ZnO nanoparticles for the enhanced photocatalytic treatment of industrial wastewater, Communications in Science and Technology. 10 (2025) 10–16.
45. Ali, M. M., Characterization of ZnO thin films grown by chemical bath deposition, Journal of Basrah Researches (Sciences). 37 (2011).