Synthesis of Cu Nanoparticles using Anredera cordifolia Extract and their Potential as Antidiabetic with Alpha Amylase Enzyme Inhibition

Main Article Content

Nurharis Munandar
Henry F. Aritonang
Ridho Bonaventura
Dwi Putra Wijaya

Abstract

This study reports a green synthesis of copper nanoparticle using binahong (Anredera cordifolia) leaf extract as both a bioreductant and a capping agent. The synthesis was optimized by varying the extract-to-precursor ratio (1:3, v/v) and the reaction pH (6–11) with pH 10 selected as the optimal condition for nanoparticle preparation. Nanoparticle formation was confirmed using UV–Vis spectroscopy, showing a strong absorption band at 325 nm, indicative of oxide-based copper nanostructures and/or surface oxidation during green synthesis. XRD patterns revealed Cu2O as the dominant crystalline phase, characterized by reflections at 2θ ≈ 29.6°, 36.4°, 42.3°, 61.3°, 73.5°, and 77.3°, with a possible minor contribution from metallic Cu due to peak overlap. FTIR spectra confirmed the presence of biomolecules (O–H and C–H bands, along with carbonyl/COO-related bands) involved in nanoparticle stabilization, as well as Cu–O vibrations around 600–620 cm−1 consistent with Cu2O. PSA showed a dominant hydrodynamic size in the 60–70 nm range (average 65 nm), whereas SEM indicated aggregation into micrometer-scale clusters upon drying. In vitro α-amylase inhibition assays demonstrated concentration-dependent inhibition, with CuNPs (IC50 6.18 μg/mL) and the extract + CuNPs mixture (IC50 6.83 μg/mL) approaching that of acarbose (IC50 5.04 μg/mL) and exhibiting stronger activity than the extract alone (IC50 8.89 μg/mL). The key contribution of this work is the development of a simple, aqueous, environmentally friendly route that leverages local biological resources while producing Cu2O-rich nanoparticles with α-amylase inhibitory activity approaching that of acarbose. These findings highlight the promise of a low-cost antidiabetic candidate for postprandial glucose control and provide a basis for further investigations into nanoformulation and preclinical evaluation.

Downloads

Download data is not yet available.

Article Details

How to Cite
Munandar, N., Aritonang, H. F., Bonaventura, R., & Wijaya, D. P. (2025). Synthesis of Cu Nanoparticles using Anredera cordifolia Extract and their Potential as Antidiabetic with Alpha Amylase Enzyme Inhibition. Communications in Science and Technology, 10(2), 422–430. https://doi.org/10.21924/cst.10.2.2025.1829
Section
Articles

References

1. N.H. Cho, J.E. Shaw, S. Karuranga, Y. Huang, J.D. da Rocha Fernandes, A.W. Ohlrogge, B. Malanda, IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045, Diabetes Res. Clin. Pract. 138 (2018) 271–281.
2. C.C. Patterson, S. Karuranga, P. Salpea, P. Saeedi, G. Dahlquist, G. Soltesz, G.D. Ogle, Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: Results from the International Diabetes Federation Diabetes Atlas, 9th edition, Diabetes Res. Clin. Pract. 157 (2019) 107842.
3. D.S. Prawitasari, Diabetes Melitus dan Antioksidan, Keluwih: Jurnal Kesehatan dan Kedokteran 1 (2019) 47–51.
4. C.A. Pieme, J.A. Tatangmo, G. Simo, P.C. Biapa Nya, V.J. Ama Moor, B. Moukette Moukette, F. Tankeu Nzufo, B.L. Njinkio Nono, E. Sobngwi, Relationship between hyperglycemia, antioxidant capacity and some enzymatic and non-enzymatic antioxidants in African patients with type 2 diabetes, BMC Res. Notes 10 (2017) 141.
5. A.B. Oyenihi, A.O. Ayeleso, E. Mukwevho, B. Masola, Antioxidant strategies in the management of diabetic neuropathy, BioMed Res. Int. 2015 (2015) 515042.
6. Erlidawati, S. Safrida, M. Mukhlis, Potensi Antioksidan Sebagai Antidiabetes: Buku untuk mahasiswa, Syiah Kuala University Press (2018) 1–130.
7. R. Kitture, K. Chordiya, S. Gaware, S. Ghosh, P.A. More, P. Kulkarni, B.A. Chopade, S.N. Kale, ZnO nanoparticles-red sandalwood conjugate: a promising anti-diabetic agent, J. Nanosci. Nanotechnol. 15 (2015) 4046–4051.
8. A.B. Patil, S. Ghosh, S.D. Phadatare, P. Pathak, G.K. Sharma, B.A. Chopade, V.S. Shinde, Evaluation of malonic acid diamide analogues as radical scavenging agents, New J. Chem. 39 (2015) 1267–1273.
9. V.P. Roseline, V. Priya, Antidiabetic potential of copper oxide nanoparticles using biological and polymer functionalized method mediated by Sarcostemma acidum stem extract, Orient. J. Chem. 39 (2023) 387–392.
10. S. Ghosh, P. More, R. Nitnavare, S. Jagtap, R. Chippalkatti, A. Derle, R. Kitture, A. Asok, S. Kale, S. Singh, M.L. Shaikh, B. Ramanamurthy, J. Bellare, B.A. Chopade, Antidiabetic and antioxidant properties of copper nanoparticles synthesized by medicinal plant Dioscorea bulbifera, J. Nanomed. Nanotechnol. S6 (2015) 007.
11. R. Singh, L.U. Nawale, M. Arkile, U.U. Shedbalkar, S.A. Wadhwani, D. Sarkar, B.A. Chopade, Chemical and biological metal nanoparticles as antimycobacterial agents: A comparative study, Int. J. Antimicrob. Agents 46 (2015) 183–188.
12. F. Buazar, S. Sweidi, M. Badri, F. Kroushawi, Biofabrication of highly pure copper oxide nanoparticles using wheat seed extract and their catalytic activity: A mechanistic approach, Green Process. Synth. 8 (2019) 691–702.
13. S.C. Wattimena, P.J. Patty, Antibacterial properties of silver nanoparticles synthesized using leaf extract of Anredera cordifolia as a reducing agent, World J. Pharm. Pharm. Sci. 6 (2017) 1673–1683.
14. N. Munandar, S. Kasim, R. Arfah, D.N. Basir, Y. Hala, M. Zakir, H. Natsir, Green synthesis of copper oxide (CuO) nanoparticles using Anredera cordifolia leaf extract and their antioxidant activity, Commun. Sci. Technol. 7 (2022) 127–134.
15. A.A. Disher, A.M.A. Al-Kufaishi, Z.M. Najm, A.A.M. Mohammed, L.A.M. AlMashhedy, B.M. Alshelah, B.H. Al-Kinani, Ecofriendly synthesis of copper nanoparticles using coriander seeds for enhanced adsorption efficiency, Open Biotechnol. J. 19 (2025) e18740707373773.
16. R.W.H. Putri, S. Sutoyo, The potency of noni leaves extract (Morinda citrifolia L.) as a bioreductor in the synthesis of copper nanoparticles and its effectiveness as an antibacterial against Streptococcus pyogenes, Jurnal Kimia Sains dan Aplikasi 28 (2025) 138–145.
17. M.B. Mobarak, M.F. Sikder, K.S. Muntaha, S. Islam, S.M.F. Rabbi, F. Chowdhury, Plant extract-mediated green-synthesized CuO nanoparticles for environmental and microbial remediation: A review covering basic understandings to mechanistic study, Nanoscale Adv. 7 (2025) 2418–2445.
18. O. Havryliuk, G. Rathee, J. Blair, V. Hovorukha, O. Tashyrev, J. Morató, L.M. Pérez, T. Tzanov, Unveiling the potential of CuO and Cu2O nanoparticles against novel copper-resistant Pseudomonas strains: An in-depth comparison, Nanomaterials 14 (2024) 1644.
19. P. Zambare, A. Survase, S. Kanase, Green synthesis of copper nanoparticles using leaf extract of Ocimum sanctum and its antimicrobial activity, Int. J. Pharm. Investig. 13 (2023) 106–112.
20. A. Nazir, S. Aslam, P. Akhter, O.A. Mohammed, A.S. Doghish, N. Alwadai, A. Ali, H. Arif, M. Iqbal, Effect of iron doping on titania nanoparticles derived from Dalbergia sissoo for removal of tetracycline hydrochloride, Semiconductors 59 (2025) 291–299.
21. B. Ahmed, M.B. Tahir, M. Sagir, M. Hassan, Bio-inspired sustainable synthesis of silver nanoparticles as next generation of nanoproduct in antimicrobial and catalytic applications, Mater. Sci. Eng. B 301 (2024) 117165.
22. T.D. Nguyen, T.P.-N. Nguyen, N.T.-T. Thai, Y.H. Hoang, G.T.-N. Trinh, Investigating the antimicrobial activity of silver nanoparticles with varying charges green-synthesized from Tabebuia rosea flower, Commun. Sci. Technol. 9 (2024) 398–410.
23. S. Sujinnapram, K. Kengtone, C. Raktham, K. Hongsith, S. Choopun, S. Wongrerkdee, Tunable copper oxide quantum dots: electrochemical synthesis, characterization, and advanced applications, Commun. Sci. Technol. 10 (2025) 45–51.
24. C.-J. Chang, C.-W. Kang, A. Pundi, Effect of calcination-induced oxidation on the photocatalytic H2 production performance of cubic Cu2O/CuO composite photocatalysts, Catalysts 14 (2024) 926.
25. X. Luo, C. Zhou, H. Teng, X. Li, H. Tian, X. Ji, C. Liu, Hexagonal dendritic Cu2O: a breakthrough in photocatalytic efficiency for CR dye degradation, Chem. Phys. Lett. 876 (2025) 142293.
26. D. Papamichail, F. Franceschini, I. Abbas, D. Balalta, T.T.H. Nguyen, D. Pant, S. Bals, I. Taurino, E. Janssens, D. Grandjean, P. Lievens, Nanostructuring copper thin film electrodes for CO2 electroreduction to C2+ products, Nanoscale 17 (2025) 17745–17757.
27. S. Feng, X. Xing, W. Hou, Copper oxide nanoparticles modified electrodes for high-sensitivity detection of uric acid in athletes, Alex. Eng. J. 101 (2024) 1–7.
28. H. Abdelbaki, A. Djemoui, L. Souli, A. Souadia, M.R. Ouahrani, B. Djemoui, M.B. Lahrech, M. Messaoudi, I. Ben Amor, A. Benarfa, A. Alsalme, M. Bechelany, A. Barhoum, Plant mediated synthesis of flower-like Cu2O microbeads from Artimisia campestris L. extract for the catalyzed synthesis of 1,4-disubstituted 1,2,3-triazole derivatives, Front. Chem. 11 (2024) 1342988.
29. Y. Li, M. Yan, X. Li, J. Ma, Construction of Cu2O-ZnO/Cellulose composites for enhancing the photocatalytic performance, Catalysts 14 (2024) 476.
30. J. Neiva, Z. Benzarti, S. Carvalho, S. Devesa, Green synthesis of CuO nanoparticles—structural, morphological, and dielectric characterization, Materials 17 (2024) 5709.
31. M. Salama, P.C. Pwavodi, Green synthesis of CuO nanoparticles from Punica granatum leaves and their application in the enhancement of cold-pressed calcareous alkali-activated materials for sustainability, PLOS ONE 20 (2025) e0336812.
32. B. Djamila, L.S. Eddine, B. Abderrhmane, N. Allag, A. Barhoum, In vitro antioxidant activities of copper mixed oxide (CuO/Cu2O) nanoparticles produced from the leaves of Phoenix dactylifera L., Biomass Conv. Bioref. 14 (2024) 6567–6580.
33. T. Saha, M.B. Mobarak, M.N. Uddin, M.S. Quddus, M.R. Naim, N.S. Pinky, Biogenic synthesis of copper oxide (CuO) NPs exploiting Averrhoa carambola leaf extract and its potential antibacterial activity, Mater. Chem. Phys. 305 (2023) 127979.
34. A. Shafiq, U. Jeong, Y. Han, Y. Kim, J. Lee, B.S. Kim, Green Synthesis of Copper Oxide Nanoparticles from Waste Solar Panels Using Piper nigrum Fruit Extract and Their Antibacterial Activity, Catalysts 14 (2024) 472.
35. K. Ramasubbu, S. Padmanabhan, K.A. Al-Ghanim, M. Nicoletti, M. Govindarajan, N. Sachivkina, V.D. Rajeswari, Green Synthesis of Copper Oxide Nanoparticles Using Sesbania grandiflora Leaf Extract and Their Evaluation of Anti-Diabetic, Cytotoxic, Anti-Microbial, and Anti-Inflammatory Properties in an In-Vitro Approach, Fermentation 9 (2023) 332.
36. A. Relhan, S. Guleria, A. Bhasin, A. Mirza, J.L. Zhou, Biosynthesized copper oxide nanoparticles by Psidium guajava plants with antibacterial, antidiabetic, antioxidant, and photocatalytic capacity, Biomass Conv. Bioref. 15 (2025) 26623–26640.
37. R. Shanmugam, T. Munusamy, A.M. Nisha, A. Rajaselin, S. Govindharaj, Exploring the In Vitro Antidiabetic Potential of Metal Oxide Nanoparticles Synthesized Using Lemongrass and Mint Formulation, Cureus 16 (2024) e53489.
38. M. Devaraji, P.V. Thanikachalam, K. Elumalai, The potential of copper oxide nanoparticles in nanomedicine: A comprehensive review, Biotechnol. Notes 5 (2024) 80–99.