Enhanced Soil Fertility and Baby Maize Yield Through Bacillus megaterium CM2 under Reduced Nitrogen Input

Main Article Content

Nguyen Van Chuong
Tran Minh Vu
Le Minh Tuan
Nguyen Thi Thai Son
Tran Le Kim Tri
Nguyen Van Thuan
Phan Tran Hai Dang
Tran Thanh Liem
Nguyen Ngoc Phuong Trang

Abstract

This present study evaluated the effectiveness of Bacillus megaterium CM2 (strain CM2) as a biofertilizer for the enhancement of soil fertility and baby maize (Zea mays L.) productivity under reduced nitrogen (N) input in the Mekong Delta, Vietnam. A field experiment was conducted using a randomized complete block design (RCBD) featuring five treatments combining strain CM2 inoculation and varying nitrogen fertilizer rates. Each treatment was replicated four times. The treatments included a non-inoculated control receiving the full recommended N rate (350 kg urea ha−1) and four strain CM2-inoculated treatments supplied with 100%, 75%, 50%, and 25% of the recommended N dose (350, 262.5, 175, and 87.5 kg urea ha−1, respectively). Laboratory characterization demonstrated that strain CM2 possessed high nitrogenase activity, strong thermotolerance, and broad adaptability, confirming its suitability for field application. In comparison with the non-inoculated control, strain CM2 inoculation under reduced N regimes significantly improved soil chemical properties, including soil pH, cation exchange capacity, soil organic matter, total nitrogen, available phosphorus, and exchangeable potassium. This present study revealed overall soil fertility indicators exhibited an increase by approximately 10–95%, with the lowest responses as observed in under treatments subjected to 25% and 57% reductions in nitrogen fertilizer application. Whilst the most pronounced enhancement were recorded at the 50% N reduction level, particularly for pH (6.99), CEC (14.8 cmol+ kg−1), and SOM (2.99%). Thirty days after sowing, CM2-inoculated plants exhibited substantial increases in leaf number (32%), chlorophyll content (17%), and plant height (19%) relative to uninoculated control. Furthermore, yield performance was also substantially enhanced, with total edible cob yield reaching 2.98 t ha−1 and the proportion of grade-1 cobs increasing to 65.8%, corresponding to yield gains of 12.9% and 27.6%, respectively. The enhancement observed were attributed to enhanced biological nitrogen fixation, phytohormone-mediated growth promotion, and improved nutrient acquisition efficiency. The integration of strain CM2 with 25–50% reduced N fertilization-maintained yield and improved soil fertility, highlighting its potential as an eco-friendly microbial inoculant for sustainable baby maize cultivation.

Downloads

Download data is not yet available.

Article Details

How to Cite
Chuong, N. V., Vu, T. M., Tuan, L. M., Son, N. T. T., Tri, T. L. K., Thuan, N. V., … Trang, N. N. P. (2025). Enhanced Soil Fertility and Baby Maize Yield Through Bacillus megaterium CM2 under Reduced Nitrogen Input. Communications in Science and Technology, 10(2), 411–421. https://doi.org/10.21924/cst.10.2.2025.1832
Section
Articles

References

1. M. Shiva Prasad, J. Srinivas, K. Nagaraju, B. Chandra Sheker, M. Soniya and K Sankeerthana, Importance and future prospects of baby corn (Zea mays L.) in India, Int. J. Adv. Biochem. Res. 8(2024)1343-1345.
2. G. Swapna, G. Jadesha, P. Mahadevu, B. S. Shivakumar, B. T. Ravindra Babu, Mallikarjuna N., and Chandrakala Hanagi, Baby Corn: A New Challenges, Scope, Present Status and Strategies, Plant Cell Biotechnol. Mol. Biol. 25 (2024)1–12.
3. N. V. Chuong, T. Nguyen Ngoc Phuong, and T. Nguyen Van, Nitrogen fertilizer use reduction by two endophytic diazotrophic bacteria for soil nutrients and corn yield, Commun. Sci. Technol. 9(2024) 348-355.
4. A. E. Asibi, , Q. Chai, and J. Coulter, Mechanisms of Nitrogen Use in Maize, Agronomy, 9(2019) 775.
5. K. Yue, L. Li, J. Xie, L. Wang, Y. Liu, and S. Anwar, Tillage and nitrogen supply affects maize yield by regulating photosynthetic capacity, hormonal changes and grain filling in the Loess Plateau. Soil Tillage Res. 218 (2022)105317.
6. F. A. Fayyaz, I. A. M. Ansar, M. Akmal, S. Alamri, A. T Alfagham, R. Gamrat, and A. Qayyum, Long-term impact of different prevalent cropping systems on soil physico-chemical characteristics under subtropical climate conditions of Punjab, Pakistan, Sci. Rep. 15(2025) 3874.
7. S. Cai, X. Zhao, and X. Yan, Towards precise nitrogen fertilizer management for sustainable agriculture, Earth Critical Zone 2(20250 100026.
8. S. K. Upadhyay, A. K. Srivastava, V. D. Rajput, P. K. Chauhan, A.A. Bhojiya, D. Jain et al., Root exudates: mechanistic ınsight of plant growth promoting rhizobacteria for sustainable crop production, Front Microbiol. 14(2022) 916488.
9. M. Maciel-Rodríguez, F. D. Moreno-Valencia, and M. Plascencia-Espinosa, The role of plant growth-promoting bacteria in soil restoration: a strategy to promote agricultural sustainability, Microorganisms 13(2025)1799.
10. N. A. Agbodjato, and O. O. Babalola, Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops, PeerJ. 12(2024) e16836. https://doi.org/10.7717/peerj.16836
11. V. Nguyen Chuong, Influences of Enterobacter asburiae, Vermicompost Rates and Irrigation Water Types on the Soil Fertility, Peanut Yield and Quality, Curr. Appl. Sci. Technol. 25(2025) e0260428.
12. N. V. Chuong, The impact of bacillus sp. NTLG2-20 and reduced nitrogen fertilization on soil properties and peanut yield. Commun. Sci. Technol. 9(2024) 112-120.
13. H. Etesami, and B. R. Glick, Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience, Microbiol. Res. 281(2024) 127602.
14. J. Anđelković, T. Mihajilov Krstev, I. Dimkić, N. Unković, D. Stanković, and N. Joković, Growth-promoting effects of ten soil bacterial strains on aize, tomato, cucumber, and pepper under greenhouse conditions, Plants 14(2025)1874.
15. S. Lee, K. Jung-Ae, S. Jeongsup, and S. Choe, Plant growth-promoting rhizobacterium Bacillus megaterium modulates the expression of antioxidant-related and drought-responsive genes to protect rice (Oryza sativa L.) from drought, Front. Microbiol. 15(2024) 1430546.
16. W. Al-Shammari, K. Alshammery, S. Lotfi, H. Altamimi, A. Alshammari, N. A. Al-Harbi, A. A. Rashed, M. Al-Shalawi, M. E. Moustapha, E. Rashwan, and K. Abdelaal, Wheat salinity tolerance is enhanced by application of Bacillus megaterium or arbuscular mycorrhizal fungi via improving physio-biochemical and anatomical characteristics, BMC plant biology 25(2025) 835.
17. S. Lee, J-A. Kim, J. Song, S. Choe, G. Jang, and Y. Kim, Plant growth-promoting rhizobacterium Bacillus megaterium modulates the expression of antioxidant-related and drought-responsive genes to protect rice (Oryza sativa L.) from drought. Front. Microbiol. 15(2024)1430546.
18. N. V. C. Ngan, H. V. Thao, and N. D. Giang Nam, Nutrient dynamics in water and soil under conventional rice cultivation in the Vietnamese Mekong Delta, F1000Res. 10(2023) 1145.
19. Y. Liu, Z. Yue, Z. Sun, and C. Li, Harnessing native Bacillus spp. for sustainable wheat production. Appl. Environ. Microbiol. 89(2023) e0124722.
20. Y. Wang, A. Yu, Y. Shang, P. Wang, F. Wang, B. Yin, Y. Liu, D. Zhang, and Q. Chai, Research progress on the improvement of farmland soil quality by green manure, Agriculture 15(2025) 768.
21. G. Swapna, G. Jadesha, P. Mahadevu, B. S. Shivakumar, B. T. Ravindra Babu, Mallikarjuna N., and Chandrakala Hanagi, Baby corn: a new challenge, scope, present status and strategiesPlant Cell Biotechnol. Mol. Biol. 25 (2024) 1–12.
22. N. Van Chuong, T. Thanh Liem, T. Le Kim Tri, N. Ngoc Phuong Trang, and P. Tran Hai Dang, Effects of Bacillus songklensis and Bacillus siamensis WD-32 combined with vermicompost on soil fertility, growth, yield, and Arsenic accumulation in Peanut. Asian J. Agric. Biol. 3(2025) e2025142.
23. N. V. Chuong, N. N. P. Trang, P. T. H. Dang, and T. T. Liem, Positive responses of nitrogen-fixing bacteria combined with vermicompost on farmland heath and peanut yield, J. Glob. Innov. Agric. Sci. 14(2025) 147-156
24. K. Pandey, and B. S. Saharan, Soil microbiomes: a promising strategy for boosting crop yield and advancing sustainable agriculture, Discov Agric 3(2025) 54.
25. N. V. Chuong, Response of peanut quality and yield to chicken manure combined with Rhizobium inoculation in sandy soil, Commun. Sci. Technol. 8(2023) 31-37.
26. H-Y. Cui, A. Sciligo, X-L. Tan, C. Hui, Y-S. Zhang, W. Li, Z-Q. Zhou, Z-Q. Peng, P. Ma, Z-S Xiao, and F. Ouyang, Dynamic trends in maize diseases and pests across six regions in China over two decades, Crop Protection 186(2024) 106930.
27. A. M. Díaz-Rodríguez, F. I. Parra Cota, L. A. Cira Chávez, , L. F. García Ortega, M. I. Estrada Alvarado, G. Santoyo, and S. de los Santos-Villalobos, Microbial ınoculants in sustainable agriculture: advancements, challenges, and future directions, Plants 14(2025) 191.
28. N. Van Chuong, and T. Le Kim Tri, Isolation and characterization identification of edophytic nitrogen-fixing bacteria from peanut nodules, Int. J. Microbiol. 2024 (2024) 8973718.
29. A. Chibeba, S. Kyei-Boahen, A. M. Chibeba, S. Kyei-Boahen, M. F. Guimarães, M. A. Nogueira, and M. Hungria, Isolation, characterization and selection of indigenous Bradyrhizobium strains with outstanding symbiotic performance to increase soybean yields in Mozambique. Agric. Ecosyst. Environ. 246(2017) 291-305.
30. A. Del-Canto, A. Sanz-Saez, A. Sillero-Martínez, E. Mintegi, and M. Lacuesta, Selected indigenous drought tolerant rhizobium strains as promising biostimulants for common bean in Northern Spain, Front. Plant Sci. 14 (2023) 1046397.
31. P. Yarza, P. Yilmaz, E. Pruesse, F. O. Glöckner, W Ludwig, K. H. Schleifer, W. B. Whitman, Euzéby, J., R. Amann, and R. Rosselló-Móra, Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences, Nat. Rev. Microbiol., 12 (2014) 635–645.
32. A. Borah, R. Das, R. Mazumdar, and D. Thakur, Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics, J. Appl. Microbiol. 127(2019) 825–844.
33. F. M. Soper, C. Simon, and V. Jauss, Measuring nitrogen fixation by the acetylene reduction assay (ARA): is 3 the magic ratio, Biogeochemistry 152 (2021) 345–351. https:// doi.10.1007/s10533-021-00761-3.
34. C. Wang, T. Wang, Z. Li, X. Xu, X. Zhang, and D. Li, An electrochemical enzyme biosensor for ammonium detection in aquaculture using screen-printed electrode modified by gold nanoparticle/polymethylene blue, Biosensors 11(2021) 335.
35. A. W. Danial, S. M. Hamdy, S. A. Alrumman, S. M. F. Gad El-Rab, A. A. M. Shoreit, and A.E.-L. Hesham, Bioplastic production by Bacillus wiedmannii AS-02 OK576278 using different agricultural wastes. Microorganisms 9(2021) 2395.
36. R. Kumar, N. Kumawat, S. Kumar, A. K. Singh, and J. S. Bohra, Effect of NPKS and Zn fertilization on, growth, yield and quality of baby corn-a review, Int J Curr Microbiol Appl Sci 6 (2017) 1392-1428.
37. A. Walkley, and I. A. Black, An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method, Soil Science 37(1934) 29-38.
38. S. R. Olsen, and L. E. Sommers, Phosphorus. In: Page, A.L., Ed., Methods of Soil Analysis Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison (1982) 403-430.
39. M. Hafsa, and L. A. Benfekih, New insights on entomopathogenic bacteria isolated from soil of citrus crops to combat the polyphagus aphid pest Hyalopterus pruni (Geoffroy 1762) (Hemiptera, Aphididae), Egyptian Journal of Biological Pest Control 34 (2024) 51.
40. N. Van Chuong, T. Le Kim Tri, T. Minh Vu, L. Minh Tuan, T. Thanh Liem, and Nguyen Ngoc Phuong Trang, Isolation and Identification of Bacillus aryabhattai M2C: Its Effects With Vermicompost on Yield and Nutrients of Peanut (Arachis hypogaea L.), International Journal of Microbiology 9923279 (2025) 11.
41. S. Harirchi, T. Sar, M. Ramezani, H. Aliyu, Z. Etemadifar, S. A. Nojoumi, F. Yazdian, M. K. Awasthi, and M. J. Taherzadeh, Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives, Microorganisms 10(2022) 2355
42. X. Blanco Crivelli, C. Cundon, M. P. Bonino, M. S. Sanin, and A. Bentancor, The Complex and Changing Genus Bacillus: A Diverse Bacterial Powerhouse for Many Applications, Bacteria 3(2024) 256-270.
43. S. W. Noor, S. Arshad, S. M. AbdullahB. K. Kayani, and S. Fazal, 16S rRNA gene sequencing reveals bacterial diversity in Khewra Salt Mine walls, Access microbiology 6(2024) 000869.v4.
44. A. Goszcz, K. Furtak, R. Stasiuk, J. Wójtowicz, M., Musiałowski, M. Schiavon, and K. Dębiec-Andrzejewska, Bacterial osmoprotectants-a way to survive in saline conditions and potential crop allies. FEMS microbiology reviews, 49 (2025) fuaf020.
45. M. Hasanuzzaman, M. H. M. B. Bhuyan, F. Zulfiqar, A. Raza, S. M., Mohsin, J. A. Mahmud, M. Fujita, and V. Fotopoulos, Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator, Antioxidants (Basel, Switzerland), 9(2020) 681.
46. A.M. Díaz-Rodríguez, F. I. Parra Cota, L.A. Cira Chávez, L. F. García Ortega, M. I. Estrada Alvarado, G. Santoyo, and S de los Santos-Villalobos, Microbial ınoculants in sustainable agriculture: advancements, challenges, and future directions, Plants, 14(2025) 191.
47. V. M. Fernández-Pastrana, D. González-Reguero, M. Robas-Mora, D. Penalba-Iglesias, P. Alonso-Torreiro, A. Probanza, and P. A. Jiménez-Gómez, Biotechnological Test of Plant Growth-Promoting Bacteria Strains for Synthesis of Valorized Wastewater as Biofertilizer for Silvicultural Production of Holm Oak (Quercus ilex L.). Plants 14(2025), 2654. https://doi.org/10.3390/plants14172654
48. H. Liu H., Cheng, S. Xu, D. Zhang, J. Wu, Z. Li, B. Fu, and L. Liu, Genetic Diversity and Growth-Promoting Functions of Endophytic Nitrogen-Fixing Bacteria in Apple. Plants 14(20258) 1235.
49. N. Chuong, The impact of Klebsiella quasipneumoniae inoculation with nitrogen fertilization on baby corn yield and cob quality. Eurasian J. Soil Sci. 13(2024) 133-138.
50. A. Ali, N. Jabeen, R. Farruhbek, Z. Chachar, A. A. Laghari, S. Chachar,N. Ahmed, S. Ahmed, and Z. Yang, Enhancing nitrogen use efficiency in agriculture by integrating agronomic practices and genetic advances. Front. Plant Sci. 16(2025) 1543714.
51. X. Cao, K. Xia, H. Zhao, P. Deng, Z. Teng, and X. Xu, Soil organic carbon, pH, and ammonium nitrogen controlled changes in bacterial community structure and functional groups after forest conversion. Front. For. Glob. Change 7(2024) 1331672
52. T. L. Ng, T. C. Lin, E. Wang, T. Y. Lee, G. T. Chen, J. F. Su, and W. L. Chen, Bacillus-Based biofertilizer influences soil microbiome to enhance soil health for sustainable agriculture, Sustainability 17(2025) 6293.
53. A.M. Díaz-Rodríguez, F. T. Parra Cota, L. A. Cira Chávez, L. F. García Ortega, M. I. Estrada Alvarado, G. Santoyo, and S. de los Santos-Villalobos, Microbial inoculants in sustainable agriculture: advancements, challenges, and future directions, Plants 14(2025): 191.
54. S. K. Jaiswal, and F. D. Dakora, Maximizing Photosynthesis and Plant Growth in African Legumes Through Rhizobial Partnerships: The Road Behind and Ahead, Microorganisms 13(2025) 581.
55. V. C. Nguyen, The Effectiveness of chemical fertilizer combined with lime, cow manure and indigenous nitrogen-fixing bacteria inoculation on soil fertility and white bean yield. Malaysian Journal of Soil Science 29(2025)19-28.
56. X. Zhang, L. Zhang, J. Liu, Z. Shen, Z. Liu, H. Gu, X. Hu, Z. Yu, Y. Li, J. Jin, and G. Wang, Biofertilizers Enhance Soil Fertility and Crop Yields Through Microbial Community Modulation, Agronomy 15(2025) 1572.
57. R. D. J. Cano, J. M. Daniels, M. Carlin, and D. Huber, Enhancing Soil Health and Corn Productivity with a Co-Fermented Microbial Inoculant (CFMI-8): A Field-Based Evaluation, Microorganisms 13(2025) 1638.
58. N. Trang, and N. Chuong, The enhancement of soil fertility and baby maize output by Streptomyces panayensis and vermicompost, Eurasian Journal of Soil Science 14(2025) 140-148.
59. H. Etesami, The dual nature of plant growth-promoting bacteria: Benefits, risks, and pathways to sustainable deployment, Current Research in Microbial Sciences 9(2025) 100421.