HKUST-1-Catalyzed Chan–Evans–Lam C–O Coupling Under Mild Conditions with Catalyst Reusability

Main Article Content

Muhamad R. S. Sidik
Irwan Kurnia
Yessi Permana
Ubed S.F. Arrozi
Wirawan Ciptonugroho
Witri Wahyu Lestari
Yudha Prawira Budiman

Abstract

The Chan–Evans–Lam coupling refers to a valuable method for constructing C–O and C–N bonds under mild conditions. Nevertheless, the development of efficient and reusable heterogeneous catalysts remains limited. In this study, we investigated copper-based metal–organic frameworks as catalysts for C–O bond formation between 4-methoxyphenylboronic acid and phenol. The study revealed that HKUST-1 exhibited a significant enhancement in performance when compared to Cu-BDC, yielding up to 86% at room temperature and demonstrating superior accessibility of Cu2+ active sites. A systematic optimization of reaction parameters identified NEt3 as the most effective base, DCM as the optimal solvent, and a mild temperature increase to 40 °C as the key factor enabling a maximum yield of 94%. Studies on recyclability demonstrated that HKUST-1 exhibited high catalytic performance over multiple cycles without significant structural degradation, as confirmed by PXRD analysis. Overall, this work highlights HKUST-1 as an efficient, robust, and reusable heterogeneous catalyst for Chan–Evans–Lam C–O coupling, thus demonstrating its potential for sustainable synthetic applications.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sidik, M. R. S., Kurnia, I., Permana, Y., Arrozi, U. S., Ciptonugroho, W., Lestari, W. W., & Budiman, Y. P. (2025). HKUST-1-Catalyzed Chan–Evans–Lam C–O Coupling Under Mild Conditions with Catalyst Reusability. Communications in Science and Technology, 10(2), 439–446. https://doi.org/10.21924/cst.10.2.2025.1837
Section
Articles

References

1. M. J. West, J. W. B. Fyfe, J. C. Vantourout and A. J. B. Watson, Mechanistic Development and Recent Applications of the Chan–Lam Amination, Chem. Rev. 119 (2019) 12491–12523.
2. D. M. T. Chan, K. L. Monaco, R.-P. Wang and M. P. Winteres, New N-and O-arylations with phenylboronic acids and cupric acetate, Tetrahedron Lett. 39 (1998) 2933–2936.
3. D. A. Evans, J. L. Katz and T. R. West, Synthesis of Diaryl Ethers through the Copper-Promoted Arylation of Phenols with Arylboronic Acids. An Expedient Synthesis of Thyroxine, Tetrahedron Lett. 39 (1998) 2937–2940.
4. P. Y. S. Lam, C. G. Clark, S. Saubern, J. Adams, M. P. Winters and D. M. T. Chan et al., New aryl/heteroaryl C–N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation, Tetrahedron Lett. 39 (1998) 2941–2944.
5. F. Ullmann, Ueber eine neue Bildungsweise von Diphenylaminderivaten, Ber. Dtsch. Chem. Ges. 36 (1903) 2382–2384.
6. I. Goldberg, Ueber Phenylirungen bei Gegenwart von Kupfer als Katalysator, Ber. Dtsch. Chem. Ges. 39 (1906) 1691–1692.
7. A. S. Guram, R. A. Rennels and S. L. Buchwald, A Simple Catalytic Method for the Conversion of Aryl Bromides to Arylamines, Angew. Chem. Int. Ed. 34 (1995) 1348–1350.
8. J. Louie and J. F. Hartwig, Palladium-catalyzed synthesis of arylamines from aryl halides. Mechanistic studies lead to coupling in the absence of tin reagents, Tetrahedron Lett. 36 (1995) 3609–3612.
9. I. Funes-Ardoiz and F. Maseras, Oxidative Coupling Mechanisms: Current State of Understanding, ACS Catal. 8 (2018) 1161–1172.
10. C. Sambiagio, S. P. Marsden, A. J. Blacker and P. C. McGowan, Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development, Chem. Soc. Rev. 43 (2014) 3525–3550.
11. Q. Yang, Y. Zhao and D. Ma, Cu-Mediated Ullmann-Type Cross-Coupling and Industrial Applications in Route Design, Process Development, and Scale-up of Pharmaceutical and Agrochemical Processes, Org. Process Res. Dev. 26 (2022) 1690–1750.
12. M. N. Lavagnino, T. Liang and D. W. C. MacMillan, HARC as an open-shell strategy to bypass oxidative addition in Ullmann–Goldberg couplings, Proc. Natl. Acad. Sci. USA 117 (2020) 21058–21064.
13. G. J. Sherborne, S. Adomeit, R. Menzel, J. Rabeah, A. Brückner and M. R. Fielding et al., Origins of high catalyst loading in copper(i)-catalysed Ullmann–Goldberg C–N coupling reactions, Chem. Sci. 8 (2017) 7203–7210.
14. J. M. Dennis, N. A. White, R. Y. Liu and S. L. Buchwald, Pd-Catalyzed C–N Coupling Reactions Facilitated by Organic Bases: Mechanistic Investigation Leads to Enhanced Reactivity in the Arylation of Weakly Binding Amines, ACS Catal. 9 (2019) 3822–3830.
15. S. McCarthy, D. C. Braddock and J. D. E. T. Wilton-Ely, Strategies for sustainable palladium catalysis, Coord. Chem. Rev. 442 (2021) 213925.
16. J.-Q. Chen, J.-H. Li and Z.-B. Dong, A Review on the Latest Progress of Chan-Lam Coupling Reaction, Adv. Synth. Catal. 362 (2020) 3311–3331.
17. R. Hajinasiri, Arylboronic acids in organic synthesis, J. Mol. Struct. 1336 (2025) 142029.
18. N. de J. Hiller, N. A. do A. e Silva, T. A. Tavares, R. X. Faria, M. N. Eberlin and D. de L. Marins, Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis, Eur. J. Org. Chem. 2020 (2020) 4841–4877.
19. M. G. J. Doyle and R. J. Lundgren, Oxidative cross-coupling processes inspired by the Chan–Lam reaction, Chem. Commun. 57 (2021) 2724–2731.
20. I. Munir, A. F. Zahoor, N. Rasool, S. A. R. Naqvi, K. M. Zia and R. Ahmad, Synthetic applications and methodology development of Chan-Lam coupling: a review, Mol. Divers. 23 (2019) 215–259.
21. A. Medda, G. Pal, R. Singha, T. Hossain, A. Saha and A. R. Das, Expedient Synthesis of Biologically Potent Aryloxycoumarins and (Aryloxyimino)ethylcoumarins via Copper(II)-Promoted Chan–Lam Coupling Reaction, Synth. Commun. 43 (2013) 169–181.
22. F. Saadati, A. M. Chahardehi, N. Jamshidi, N. Jamshidi and D. Ghasemi, Coumarin: A natural solution for alleviating inflammatory disorders, Curr. Res. Pharmacol. Drug Discov. 25 (2024) 100202.
23. J. J. Strouse, M. Jeselnik, F. Tapaha, C. B. Jonsson, W. B. Parker and J. B. Arterburn, Copper catalyzed arylation with boronic acids for the synthesis of N1-aryl purine nucleosides, Tetrahedron Lett. 46 (2005) 5699–5702.
24. R. Ledesma-Amaro, R. M. Buey and J. L. Revuelta, Increased production of inosine and guanosine by means of metabolic engineering of the purine pathway in Ashbya gossypii, Microb. Cell Fact. 14 (2015) 58–66.
25. P. J. Wickhorst, M. Blachnik, D. Lagumdzija and H. Ihmels, Synthesis of 10- O-aryl-substituted berberine derivatives by Chan-Evans-Lam coupling and investigation of their DNA-binding properties, Beilstein J. Org. Chem. 17 (2021) 991–1000.
26. A. R. Utami, I. P. Maksum and Y. Deawati, Berberine and Its Study as an Antidiabetic Compound, Biology 12 (2023) 973–987.
27. F. R. Mansour, S. F. Hammad, I. A. Abdallah, A. Bedair, R. M. Abdelhameed and M. Locatelli, Applications of metal organic frameworks in point of care testing, Trends Anal. Chem. 172 (2024) 117596.
28. H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341 (2013) 1230444.
29. A. Bavykina, N. Kolobov, I. S. Khan, J. A. Bau, A. Ramirez and J. Gascon, Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives, Chem. Rev. 120 (2020) 8468–8535.
30. G. H. Dang, Y. T. H. Vu, Q. A. Dong, D. T. Le, T. Truong and N. T. S. Phan, Quinoxaline synthesis via oxidative cyclization reaction using metal–organic framework Cu(BDC) as an efficient heterogeneous catalyst, Appl. Catal. A: Gen. 491 (2015) 189–195.
31. S. Rostamnia, H. Alamgholiloo and X. Liu, Pd-grafted open metal site copper-benzene-1,4-dicarboxylate metal organic frameworks (Cu-BDC MOF’s) as promising interfacial catalysts for sustainable Suzuki coupling, J. Colloid Interface Sci. 469 (2016) 310–317.
32. B.-C. Li, J.-Y. Lin, J. Lee, E. Kwon, B. X. Thanh and X. Duan et al., Size-Controlled Nanoscale Octahedral HKUST-1 as an Enhanced Catalyst for Oxidative Conversion of Vanillic Alcohol: The Mediating Effect of Polyvinylpyrrolidone, Colloids Surf. A: Physicochem. Eng. Asp. 631 (2021) 127639.
33. Y. P. Budiman, M. Rashifari, S. Azid, I. Z. Ghafara, Y. Deawati and Y. Permana et al., HKUST-1-Catalyzed Homocoupling of Arylboronic Acids, ChemistrySelect 9 (2024) e202304913.
34. C. G. Carson, K. Hardcastle, J. Schwartz, X. Liu, C. Hoffmann, and R. A. Gerhardt et al., Synthesis and Structure Characterization of Copper Terephthalate Metal–Organic Frameworks, Eur. J. Inorg. Chem., 2009 (2009) 2338–2343.
35. X. Ma, L. Wang, H. Wang, J. Deng, Y. Song and Q. Li et al., Insights into Metal-Organic Frameworks HKUST-1 Adsorption Performance for Natural Organic Matter Removal from Aqueous Solution, J. Hazard Mater. 424 (2022) 126918.
36. S. Taheri, H. Mollabagher and S. A. H. Mousavi, Metal Organic Framework Cu-BDC as an Efficient and Reusable Catalyst for One-Pot Synthesis of Benzophenazine Derivatives, Polycycl. Aromat. Comp. 42 (2022) 6523–6536.
37. N. Cao, Y. Tong, J. Xie, H. Ma and S. Go, MOF-253·Cu(OAc)2 as a heterogeneous catalyst for N-arylation of heterocycles, J. Org. Chem. 1033 (2025) 123641.
38. X. Zhang, J. Qin, R. Ma and L. Shi, A base-free Chan–Lam reaction catalyzed by an easily assembled Cu(II)-carboxylate metal-organic framework, J. Chem. Res. 45 (2021) 795–799.
39. A. Goswami, P. Dutta and K. Biradha, Metal–organic frameworks with open metal sites act as efficient heterogeneous catalysts for Knoevenagel condensation and the Chan–Lam coupling reaction, CrystEngComm. 25 (2023) 5092–5099.
40. R. M. Bora, L. Kyndiah, P. Borah, S. Chingangbam, J. B. Jadav and R. Devan et al., Copper‐Functionalized MIL‐101(Cr): An Efficient, Reusable, and Heterogeneous Catalyst for Chan–Lam Coupling and Amide Bond Formation, ChemistrySelect 10 (2025) e202500513.
41. N. Anbu & A. Dhakshinamoorthy, Cu3(BTC)2 metal-organic framework catalyzed N-arylation of benzimidazoles and imidazoles with phenylboronic acid, J. Ind. Eng. Chem. 65 (2018) 120–126.
42. A. Muñoz, P. Leo, G. Orcajo, F. Martínez and G. Calleja, URJC-1-MOF as New Heterogeneous Recyclable Catalyst for C-Heteroatom Coupling Reactions, ChemCatChem. 11 (2019) 3376–3380.
43. A. Khosravi, J. Mokhtari, M. R. Naimi-Jamal, S. Tahmasebi and L. Panahi, Cu2(BDC)2(BPY)–MOF: an efficient and reusable heterogeneous catalyst for the aerobic Chan–Lam coupling prepared via ball-milling strategy, RSC Adv. 7 (2017) 46022–46027.
44. Y. P. Budiman, M. R. S. Sidik, M. D. Permana, K. Haikal, I. I. Widiyowati and Y. Permana et al., Catalytic efficiency of Cu-MOFs: HKUST-1 and CuBDC for the protodeboronation of aryl boronic acids, RSC Adv. 15 (2025) 29453–29461.
45. O. M. Yaghi, A. U. Czaja, B. Wang and Z. Lu, Oxidative homo-coupling reactions of aryl boronic acids using a porous copper metal-organic framework as a highly efficient heterogeneous catalyst, US Patents 2012.
46. P. Puthiaraj, P. Suresh and K. Pitchumani, Aerobic homocoupling of arylboronic acids catalysed by copper terephthalate metal–organic frameworks, Green Chem. 16 (2014) 2865–2675.
47. M. Todaro, L. Sciortino, F. M. Gelardi and G. Buscarino, Determination of Geometry Arrangement of Copper Ions in HKUST-1 by XAFS During a Prolonged Exposure to Air, J. Phys. Chem. C. 21 (2017) 24853–24860.
48. I. Luz, F. X. Llabrés i Xamena and A. Corma, Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines, J. Catal. 285 (2012) 285–291.
49. H. K. Kim, W. S. Yun, M.-B. Kim, J. Y. Kim, Y.-S. Bae and J.-D. Lee, A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal–Organic Framework Materials HKUST-1 and Cu-MOF-2, J. Am. Chem. Soc. 137 (2015) 10009–10015.
50. Y. Jing, Y. Yoshida, P. Huang and H. Kitagawa, Reversible One-to Two-to Three-Dimensional Transformation in CuII Coordination Polymer, Angew. Chem. Int. Ed. 61 (2022) e202117417.
51. H. Eguchi, S. Kato, S. Maegawa, F. Itoigawa and K. Nagata, Solid-lubrication properties of copper benzene-1,4-dicaboxylate, a metal–organic framework with a two-dimensional layered crystal structure, RSC Appl. Interfaces 2 (2025) 451–459.
52. V. H. Duparc, G. L. Bano and F. Schaper, Chan–Evans–Lam Couplings with Copper Iminoarylsulfonate Complexes: Scope and Mechanism, ACS Catal. 8 (2018) 7308–7325.
53. L. Zhang, G. Zhang, M. Zhang and J Cheng, Cu(OTf)2-Mediated Chan-Lam Reaction of Carboxylic Acids to Access Phenolic Esters, J. Org. Chem. 75 (2010) 7472–7474.
54. J. D. Grayson, F. M. Dennis, C. C. Robertson and B. M. Partridge, Chan–Lam Amination of Secondary and Tertiary Benzylic Boronic Esters, J. Org. Chem. 86 (2021) 9883–9897.
55. S. A. Rossi, K. W. Shimkin, Q. Xu, L. M. Mori-Quiroz and D. A. Watson, Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides, Org. Lett. 15 (2013) 2314–2317.
56. J. C. Vantourout, R. P. Law, A. Isidro-Llobet, S. J. Atkinson and A. J. B. Watson, Chan–Evans–Lam Amination of Boronic Acid Pinacol (BPin) Esters: Overcoming the Aryl Amine Problem, J. Org. Chem. 81 (2016) 3942–3950.
57. S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen and I. D. Williams, A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n, Science 283 (1999) 1148–1150.
58. A. Dhakshinamoorthy and H. Garcia, Cascade Reactions Catalyzed by Metal Organic Frameworks, ChemSusChem. 7 (2014) 2392–2410.
59. K. Kikushima, N. Miyamoto, K. Watanabe, D. Koseki, Y. Kita, and T. Dohi, Ligand- and Counterion-Assisted Phenol O-Arylation with TMP-Iodonium(III) Acetates, Org. Lett. 24 (2022), 1924–1928
60. S. Sueki and Y. Kuninobu, Copper-Catalyzed N- and O-Alkylation of Amines and Phenols using Alkylborane Reagents, Org. Lett. 15 (2013) 1544–1547.
61. E. M. Miller and M. A. Walczak, Copper-Catalyzed Oxidative Acetilzation of Boronic Esters: An Umpolung Strategy for Cyclic Acetal Synthesis, J. Org. Chem. 85 (2020) 8230–8239.
62. J. B. DeCoste, G. W. Peterson, B. J. Schindler, K. L. Killops, M. A. Browe and J. J. Mahle, The effect of water adsorption on the structure of the carboxylate containing metal-organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66, J. Mater. Chem. A. 1 (2013) 11922–11932.
63. P. Y. S. Lam, D. Bonne, G. Vincent, C. G. Clark and A. P. Combs, N-Arylation of α-Aminoesters with p-Tolylboronic Acid Promoted by Copper(II) Acetate, Tetrahedron Lett. 44 (2003) 1691–1694.
64. J. C. Vantourout, H. N. Miras, A. Isidro-Llobet, S. Sproules and A. J. B. Watson, Spectroscopic Studies of the Chan–Lam Amination: A Mechanistic-Inspired Solution to Boronic Ester Reactivity, J. Am. Chem. Soc. 139 (2017) 4769–4779.
65. T. Pooventhiran, N. Khilari and D. Koley, Mechanistic Avenues in the Chan–Lam–Based Etherification Reaction: A Computational Exploration, Chemistry 29 (2023) e202302983.
66. L. M. Huffman and S. S. Stahl, Carbon–Nitrogen Bond Formation Involving Well-Defined Aryl–Copper(III) Complexes, J. Am. Chem. Soc 130 (2008) 9196–9197.
67. C. H. Sharp, B. C. Bukowski, H. Li, E. M. Johnson, S. Ilic and A. J. Morris et al., Nanoconfinement and mass transport in metal-organic frameworks, Chem. Soc. Rev. 50 (2021) 11530–11558.
68. A. Ahmed, C. M. Robertson, A. Steiner, T. Whittles, A. Ho and V. Dhanak et al., Cu(I)Cu(II)BTC, a microporous mixed-valence MOF via reduction of HKUST-1, RSC Adv. 6 (2016) 8902–8905.
69. J. B. DeCoste, M. H. Weston, P. E. Fuller, T. M. Tovar, G. W. Peterson and M. D. LeVan et al., Metal–Organic Frameworks for Oxygen Storage, Angew. Chem. Int. Ed. Engl. 53 (2014) 14092–14095.
70. P. Guo, C. Froese, Q. Fu, Y.-T. Chen, B. Peng and W. Kleist et al., CuPd Mixed-Metal HKUST-1 as a Catalyst for Aerobic Alcohol Oxidation, J. Phys. Chem. C 122 (2018) 21433–21440.
71. J. Sherwood, J. H. Clark, I. J. S. Fairlamb and J. M. Slattery, Solvent effects in palladium catalysed cross-coupling reactions, Green Chem. 21 (2019) 2164–2213.
72. L. Li, S. Zhao, A. Joshi-Pangu, M. Diane And M. R. Biscoe, Stereospecific Pd-Catalyzed Cross-Coupling Reactions of Secondary Alkylboron Nucleophiles and Aryl Chlorides, J. Am. Chem. Soc. 136 (2014) 14027–14030.
73. P. A. Cox, M. Reid, A. G. Leach, A. D. Campbell, E. J. King and G. C. Lloyd-Jones, Base-Catalyzed Aryl-B(OH)2 Protodeboronation Revisited: From Concerted Proton Transfer to Liberation of a Transient Aryl Anion, J. Am. Chem. Soc. 139 (2017) 13156–13165.
74. M. P. Puspitasari, J. H. Pratama, R. A. Nugroho, W. W. Lestari, Y. Kemala and T. E. Saraswati, Efficient degradation of methyl orange through photo-Fenton processes with MIL-100(Fe) modified Fe3O4 (Fe3O4@MIL-100(Fe)) catalyst, Commun. Sci. Tech. 9 (2024) 252–261.
75. W. W. Lestari, M. Adreane and H. Suwarno, Enhanced Hydrogen Storage Capacity Over Electro-synthesized HKUST-1, J. Math. Fund. Sci. 49 (2017) 213–224.