Role of Gd addition on machinability of Al-15%Mg2Si in-situ composite during dry turning

Main Article Content

Is Prima Nanda
Hamidreza Ghandvar
Mohd Hasbullah Idris
Auliya Hanif
Andril Arafat

Abstract

Recently, Al-Mg2Si in-situ composites have achieved considerable attention due to their excellent physical and mechanical properties. In fact, there are some limitations of knowledge regarding the machinability characteristics of these composites - particularly when being inoculated with rare earth additions. This study in turn aimed to investigate the influence of machining parameters as well as Gd addition on the machinability of Al-15%Mg2Si composite. To examine the effect of modifier (1.0 wt. % Gd) and machining parameters (feed rate, cutting speed), microstructural evolution, surface roughness (Ra) and cutting force (Fc) were evaluated during dry turning. The results revealed that Gd addition as modifier element led to better surface roughness and higher cutting force owning to the modification of Mg2Si particle structure as well as the formation of Gd intermetallic compounds.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nanda, I. P., Ghandvar, H., Idris, M. H., Hanif, A., & Arafat, A. (2020). Role of Gd addition on machinability of Al-15%Mg2Si in-situ composite during dry turning. Communications in Science and Technology, 5(2), 65-69. https://doi.org/10.21924/cst.5.2.2020.186
Section
Articles

References

1. Q.D. Qin, Y.G. Zhao, W. Zhou, P.J. Cong, Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite, Mater. Sci. Eng: A. 447 (2007) 186-191.
2. L. Y. Pan, H. Q. Yu, Sh. Jiang, L.Y. Wang, Min Zuo, The structural evolution of Al-6Y-2P master alloy and its influence on the refinement of Mg2Si phase in Mg2Si/Al composites, Mater. Sci. Forum. 913 (2018) 490-497.
3. Y.G. Zhao, Q.D. Qin, W. Zhou, Y.H. Liang, Microstructure of the Ce-modified in situ Mg2Si/Al– Si–Cu composite, J. Alloys. Compd. 389 (2005) L1-L4.
4. Y. Sun, C. Li, Y. Liu, L. Yu, H. Li, Intermetallic phase evolution and strengthening effect in Al–Mg2Si alloys with different Cu/Ni ratios, Mater. Let. 215 (2018) 254-258.
5. X. Tong, D. Zhang, K. Wang, J. Lin, Y. Liu, Z. Shi, Y. Li, J. Lin, C. Wen, Microstructure and mechanical properties of high-pressure-assisted solidification of in situ Al–Mg2Si composites, Mater. Sci. Eng: A. 733 (2018) 9-15.
6. Y.M. Kim, S.W. Choi, Y. Kim, C.S. Kang, S-K. Hong, Influence of the Precipitation of Secondary Phase on the Thermal Diffusivity Change of Al-Mg2Si Alloys, Appl. Sci. 8 (2018) 2039.
7. W. Jiang, X. Xiaofeng, Zh. Yuguang, Z. Wang, Ch, Wu, D, Pan, Zh, Meng, Effect of the addition of Sr modifier in different conditions on microstructure and mechanical properties of T6 treated Al- Mg2Si in-situ composite, Mater. Sci. Eng: A. 721 (2018) 263-273.
8. B. W. Huang, Q. D. Qin, D. H. Zhang, Y. J. Wu, X. D. Su, Microstructure and mechanical properties of dissimilar joints of Al-Mg2Si and 5052 aluminum alloy by friction stir welding, J. Mater. Eng. Perform. 27 (2018) 1898-1907.
9. X. Tong, D. Zhang, K. Wang, J. Lin, Y. Liu, Z.Shi, Y. Li, J. Lin, C. Wen, Microstructure and mechanical properties of high-pressure-assisted solidification of in situ Al–Mg2Si composites, Mater. Sci. Eng: A. 733 (2018) 9-15.
10. H. Ghandvar, M. H. Idris, N. Ahmad, Effect of hot extrusion on microstructural evolution and tensile properties of Al-15%Mg2Si-xGd in-situ composites, J. Alloys. Compd. 751 (2018) 370-390.
11. Q.D. Qin, Y.G. Zhao, Y.H. Liang, W. Zhou, Effects of melt superheating treatment on microstructure of Mg2Si/Al–Si–Cu composite, J. Alloys. Compd. 399 (2005) 106-109.
12. H. Ghandvar, M. H. Idris, N. Ahmad, M. Emamy, Effect of gadolinium addition on microstructural evolution and solidification characteristics of Al-15%Mg2Si in-situ composite, Mater. Charact. 135 (2018) 57-70.
13. S. Farahany, H. Ghandvar, N. A. Nordin, A. Ourdjini, M. H. Idris, Effect of primary and eutectic Mg2Si crystal modifications on the mechanical properties and sliding wear behavior of an Al–20Mg2Si–2Cu–xBi composite, J. Mater. Sci. Technol. 32 (2016) 1083-1097.
14. A. Razavykia, H. Ghandvar, M. H. Idris, Effect of barium (Ba) addition on dry turning of a commercial Al-20Mg2Si-2Cu metal matrix composite, Int. J. Innov. Eng. Technol. 10 (2018) 25-31.
15. S. Farahany, H. Ghandvar, N. A. Nordin, A. Ourdjini, Microstructure characterization, mechanical, and tribological properties of slow-cooled Sb-treated Al-20Mg2Si-Cu in-situ composites, J. Mater. Eng. Perform. 26 (2017) 1685–1700.
16. Y. Lingying, H. Jilong, T. Changping, Z. Xinming, D. Yunlai, L. Zhaoyang, Z. Zhile, Modification of Mg2Si in Mg–Si alloys with gadolinium, Mater. Charact. 79 (2013) 1 – 6.
17. Y.T. Pei, J.Th.M. De Hosson, Functionally graded materials produced by laser cladding, Acta. Mater. 48 (2000) 2617- 2624.
18. N.M. Yusof, A. Razavykia, S. Farahany, A. Esmaeilzadeh, Effect of modifier elements on machinability of Al-20%Mg2Si metal matrix composite during dry turning, Machining science and technol. 20 (2016) 460-474.
19. N.A, Abukhshim, P.T, Mativenga, M.A, Sheikh, Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining, Int. J. Mach. Tool. Manu. 46 (2006) 782-800.
20. Y. Sahin, M. Kok, H. Celik, Tool wear and surface roughness of Al2O3 particle-reinforced aluminium alloy composites, J. Mater. Process. Tech. 128 (2002) 280-291.
21. J. Grum, M. Kisin, Influence of microstructure on surface integrity in turning—part II: the influence of a microstructure of the workpiece material on cutting forces, Int. J. Mach. Tool. Manu. 43 (2003) 1545-1551.
22. S. Kannan, H.A, Kishawy, Surface characteristics of machined aluminium metal matrix composites, Int. J. Mach. Tool. Manu. 46 (2006) 2017-2025.
23. K. Palanikumar, N. Muthukrishnan, K.S. Hariprasad, Surface roughness parameters optimization in machining A356/SiC/20p metal matrix composites by PCD tool using response surface methodology and desirability function, Mach, Sci, Technol. 12 (2008) 529-545.