Techno-economic analysis for the production of LaNi5 particles

Main Article Content

Asep Bayu Dani Nandiyanto
Muhammad Irfansyah Maulana
Jarot Raharjo
Yayan Sunarya
Asnul Dahar Minghat


LaNi5 is widely used in various applications. Many methods to produce LaNi5 particles have been reported but information for the large-scale production, so far, is less available. This study aimed to evaluate the project for the production of LaNi5 particles using combustion-reduction (CR) and co-precipitation-reduction (CPR) methods based on engineering and economic perspective. Engineering evaluation was conducted by evaluating the CR and CPR processes from stoichiometry. For the economic evaluation, several economic parameters were calculated in the ideal condition including gross profit margin (GPM), payback period (PBP), break-even point (BEP), cumulative net present value (CNPV), profitability index (PI), internal rate return (IRR), and return on investment (ROI). For the worst cases in the project, it was done by calculating both the internal problems (i.e., raw materials, sales, utility, labor, employee, fixed cost, variable cost, and production capacity) and the external issues (i.e., taxes and subsidiaries). The engineering analysis provided the information that CR and CPR projects are prospective for being able to be done using commercial apparatuses. The economic analysis from GPM, PBP, BEP, CNPV, and PI showed the positive results, while IRR and ROI showed the negative ones, indicating that the projects are acceptable for large-scale production, but it seems to be less attractive for industrial investors. The analysis also confirmed that the CR process was more prospective than the CPR process. This work has demonstrated the important of the projects for further developments.


Download data is not yet available.

Article Details

How to Cite
Nandiyanto, A. B. D., Maulana, M. I., Raharjo, J., Sunarya, Y., & Minghat, A. D. (2020). Techno-economic analysis for the production of LaNi5 particles . Communications in Science and Technology, 5(2), 70-84.


1. H. Van Mal, and A. Miedema. "Some applications of LaNi5-type hydrides." In Hydrides for Energy Storage, 251-260: Elsevier, 1978.
2. W. Liu, and K.-F. Aguey-Zinsou, Low temperature synthesis of LaNi5 nanoparticles for hydrogen storage, Int. J. Hydrogen Energy, 41 (3) (2016) 1679-1687.
3. R.F.S. Budi, S. Sarjiya, and S.P. Hadi, A review of potential method for optimization of power plant expansion planning in Jawa-Madura-Bali electricity system, Commun. Sci. Technol., 2 (1) (2017) 29-36.
4. D. DeSantis, J.A. Mason, B.D. James, C. Houchins, J.R. Long, and M. Veenstra, Techno-economic analysis of metal–organic frameworks for hydrogen and natural gas storage, Energy Fuel, 31 (2) (2017) 2024-2032.
5. J.Q. Albarelli, D.T. Santos, M.A.A. Meireles, M. Salgado, and M. Rueda, Techno-economic analysis of production of ammonia-borane confined in silica aerogel microparticles by subcritical CO2 drying, J. Supercritical Fluid, 138 (2018) 147-153.
6. I.M. Hidayatullah, R. Arbianti, T.S. Utami, M. Suci, M. Sahlan, A. Wijanarko, M. Gozan, and H. Hermansyah, Techno-economic analysis of lipase enzyme production from agro-industry waste with solid state fermentation method, IOP Conference Series: Materials Science and Engineering, 316 (1) (2018) 012064.
7. K. Cogollo-Herrera, H. Bonfante-Alvarez, G. De Avila-Montiel, A. Herrera-Barros, and A.D. Gonzalez-Delgado, Techno-economic sensitivity analysis of large scale chitosan production process from shrimp shell wastes, Chem. Eng, Trans., 70 (2018) 2179-2184.
8. A. Manandhar, and A. Shah, Techno-Economic Analysis of Bio-Based Lactic Acid Production Utilizing Corn Grain as Feedstock, Processes, 8 (2) (2020) 199.
9. A.B.D. Nandiyanto, Cost analysis and economic evaluation for the fabrication of activated carbon and silica particles from rice straw waste, J. Eng. Sci. Technol., 13 (6) (2018) 1523-1539.
10. R. Ragadhita, A.B.D. Nandiyanto, A.C. Maulana, R. Oktiani, A. Sukmafitri, A. Machmud, and E. Surachman, Techo-economic analysis for the production of titanium dioxide nanoparticle produced by liquid-phase synthesis method, J. Eng. Sci. Technol., 14 (3) (2019) 1639-1652.
11. A.B.D. Nandiyanto, R. Ragadhita, and I. Istadi, Techno-economic Analysis for the Production of Silica Particles from Agricultural Wastes, Morrocon J. Chem., 8 (4) (2020) 801-818.
12. E. Suwargi, B. Pardiarto, and T. Ishlah, Potensi logam tanah jarang di Indonesia, Bull. Sumber Daya Geologi, 5 (2010) 131-140.
13. D. Noviansyah. Logam Tanah Jarang (Rare Earths Element). Dunia Pustaka Jaya, 2019.
14. T. Elwert, D. Goldmann, F. Römer, M. Buchert, C. Merz, D. Schueler, and J. Sutter, Current developments and challenges in the recycling of key components of (hybrid) electric vehicles, Recycling, 1 (1) (2016) 25-60.
15. M. Blanco, E. Zelaya, and M. Esquivel, Study of the thermal stability in air of LaNi5 by DSC, EDX, TEM and XRD combined techniques, Procedia Mater. Sci., 1 (2012) 564-571.
16. P. Ferreira-Aparicio, J.J. Conde, and A.M. Chaparro. "Hydrogen storage options for portable fuel-cell systems." In Portable Hydrogen Energy Systems, 41-50: Elsevier, 2018.
17. B.F. Buletin Sumber Daya Geologi VoIndonesian Journal of Science and TechnologyThornton, and S.C. Burdette, Seekers of the lost lanthanum, Nature Chem., 11 (2) (2019) 188-188.
18. I. Wahyudi, and A. Sakti, Analyzing the profit-loss sharing contracts with Markov model, Commun. Sci. Technol., 1 (2) (2016) 78-88.
19. A.B.D. Nandiyanto, G.C.S. Girsang, R. Maryanti, R. Ragadhita, S. Anggraeni, F.M. Fauzi, P. Sakinah, A.P. Astuti, D. Usdiyana, and M. Fiandini, Isotherm adsorption characteristics of carbon microparticles prepared from pineapple peel waste, Commun. Sci. Technol., 5 (1) (2020) 31-39.
20. A.B.D. Nandiyanto, K. Kurnia, D. Sofiani, C. Kusuma, F. Fitriani, I.P. Rahayu, A. Rusli, P. A., A.S. Wiryani, and A. Rahim. Pengantar Kimia Industri: Penerapan Ilmu Kimia Menjadi Produk Kimia Skala Besar. Penerbit: UPI Press, 2016.
21. A.B.D. Nandiyanto, A. Sukmafitri, M. Fiandini, A.N. Pramadhanty, D. Miftahurrahmah, F. Chintya, H.H. Fauzani, H. Khairunnisa, I.I. Fakhri, I.H. Abbiyu, M. Muttoharoh, R. Rizkiyah, S. Madani, and S. Layli. Soal dan pembahasan kimia industri penerapan ilmu kimia menjadi produk kimia skala besar. Penerbit: UPI Press, 2020.
22. R. Sarhaddi, H. Arabi, and F. Pourarian, Structural, morphological, magnetic and hydrogen absorption properties of LaNi 5 alloy: A comprehensive study, Int. J. Modern Phys. B, 28 (14) (2014) 1450079.
23. J. Kusi?ski, K. Kowalski, S. Kac, P. Matteazzi, M. Krebs, J. Morgiel, and S. Cochet. "Microstructure of LaNi5 base nanopowders produced by high energy ball milling." Paper presented at the Solid state Phenomena, 2012.
24. Y. Xiao, Y. Liu, D. Yuan, J. Zhang, and Y. Mi, Synthesis of rod-shaped LaNi5 alloy via solid reduction method, Mater. Lett., 60 (21-22) (2006) 2558-2560.
25. N. Yasuda, T. Tsuchiya, S. Sasaki, N. Okinaka, and T. Akiyama, Self-ignition combustion synthesis of LaNi5 at different hydrogen pressures, Int. J. Hydrogen Energy, 36 (14) (2011) 8604-8609.
26. A. Burlakova, and S. Shilkin, Reaction of lanthanum carbonates with nickel in aqueous medium, Russian J. General Chem., 73 (9) (2003) 1331-1334.
27. A.B.D. Nandiyanto, and R. Ragadhita. Evaluasi ekonomi perancangan pabrik kimia. RPI Press, 2019.
28. U. Mann. Principles of chemical reactor analysis and design: new tools for industrial chemical reactor operations. John Wiley & Sons, 2009.
29. J.D. Seader, E.J. Henley, and D.K. Roper. Separation process principles. Vol. 25: Wiley New York, 1998.
30. J.P. Clark. "Economic Evaluation." In Case Studies in Food Engineering, 149-161: Springer, 2009.
31. R. Rinaldi. Catalytic Hydrogenation for Biomass Valorization. Royal Society of Chemistry, 2014.
32. D. Stefanoiu, J. Culita, and O.N. Stanasila, HYRON—An Installation to Produce High Purity Hydrogen and Soft Iron Powder from Cellulose Waste, Materials, 12 (9) (2019) 1538.
33. N. Husna, and R. Desiyanti, The Analysis of Financial Performance on Net Profit Margin at the Coal Company, Int. J. Manag. Appl. Sci., 2 (4) (2016) 105-108.
34. A. Dyhdalewicz, The implementation of variable costing in the management of profitability of sales in trade companies, e-Finanse, 11 (3) (2015) 116-127.
35. A. Zuorro, K.A. Moreno-Sader, and Á.D. González-Delgado, Economic Evaluation and Techno-Economic Sensitivity Analysis of a Mass Integrated Shrimp Biorefinery in North Colombia, Polymers, 12 (10) (2020) 2397.
36. J. Steel, L. Godderis, and J. Luyten, Methodological challenges in the economic evaluation of occupational health and safety programmes, Int. J. Env. Res. Public Health, 15 (11) (2018) 2606.
37. J.A.B. Montevechi, R.F. da Silva Costa, F. Leal, A.F. de Pinho, and J.T. de Jesus. "Economic evaluation of the increase in production capacity of a high technology products manufacturing cell using discrete event simulation." Paper presented at the Proceedings of the 2009 Winter Simulation Conference (WSC), 2009.