Improving multi-class EEG-motor imagery classification using two-stage detection on one-versus-one approach

Main Article Content

Adi Wijaya
Teguh Bharata Adji
Noor Akhmad Setiawan

Abstract

The multi-class motor imagery based on Electroencephalogram (EEG) signals in Brain-Computer Interface (BCI) systems still face challenges, such as inconsistent accuracy and low classification performance due to inter-subject dependent. Therefore, this study aims to improve multi-class EEG-motor imagery using two-stage detection and voting scheme on one-versus-one approach. The EEG signal used to carry out this research was extracted through a statistical measure of narrow window sliding. Furthermore, inter and cross-subject schemes were investigated on BCI competition IV-Dataset 2a to evaluate the effectiveness of the proposed method. The experimental results showed that the proposed method produced enhanced inter and cross-subject kappa coefficient values of 0.78 and 0.68, respectively, with a low standard deviation of 0.1 for both schemes. These results further indicated that the proposed method has an ability to address inter-subject dependent for promising and reliable BCI systems.

Downloads

Download data is not yet available.

Article Details

How to Cite
Wijaya, A., Adji, T. B., & Setiawan, N. A. (2020). Improving multi-class EEG-motor imagery classification using two-stage detection on one-versus-one approach. Communications in Science and Technology, 5(2), 85-92. https://doi.org/10.21924/cst.5.2.2020.216
Section
Articles

References

1. J. Minguillon, M. A. Lopez-Gordo, and F. Pelayo, Trends in EEG-BCI for daily-life: Requirements for artifact removal, Biomed. Signal Process. Control, 31 (2017) 407–418.
2. H. Mirvaziri and Z. S. Mobarakeh, Improvement of EEG-based motor imagery classification using ring topology-based particle swarm optimization, Biomed. Signal Process. Control, 32 (2017) 69–75.
3. J. Kevric and A. Subasi, Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system, Biomed. Signal Process. Control 31 (2017) 398–406.
4. P. J. García-Laencina, G. Rodríguez-Bermudez, and J. Roca-Dorda, Exploring dimensionality reduction of EEG features in motor imagery task classification, Expert Syst. Appl. 41.11 (2014) 5285–5295.
5. T. Uehara, M. Sartori, T. Tanaka, and S. Fiori, Robust Averaging of Covariances for EEG Recordings Classification in Motor Imagery Brain-Computer Interfaces, Neural Comput. 29.6 (2017) 1631–1666.
6. D. Li, H. Zhang, M. S. Khan, and F. Mi, A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition, Biomed. Signal Process. Control 41 (2018) 222–232.
7. A. S. Aghaei, M. S. Mahanta, and K. N. Plataniotis, Separable Common Spatio-Spectral Patterns for Motor Imagery BCI Systems, IEEE Trans. Biomed. Eng. 63.1 (2016) 15–29.
8. Siuly, H. Wang, and Y. Zhang, Detection of motor imagery EEG signals employing Naïve Bayes based learning process, Meas. J. Int. Meas. Confed. 86 (2016) 148–158.
9. H. Burianová et al., Multimodal functional imaging of motor imagery using a novel paradigm, Neuroimage 71 (2013) 50–58.
10. L. Duan, M. Bao, J. Miao, Y. Xu, and J. Chen, Classification Based on Multilayer Extreme Learning Machine for Motor Imagery Task from EEG Signals, Procedia Comput. Sci. 88 (2016) 176–184.
11. X. Xie, Z. L. Yu, H. Lu, Z. Gu, and Y. Li, Motor Imagery Classification Based on Bilinear Sub-Manifold Learning of Symmetric Positive-Definite Matrices, IEEE Trans. Neural Syst. Rehabil. Eng. 25.6 (2017) 504–516.
12. L. He, B. Liu, D. Hu, Y. Wen, M. Wan, and J. Long, Motor imagery EEG signals analysis based on Bayesian network with Gaussian distribution, Neurocomputing 188 (2016) 217–224.
13. S. Chatterjee, N. Ray Choudhury, and R. Bose, Detection of epileptic seizure and seizure-free EEG signals employing generalised S -transform, IET Sci. Meas. Technol. 11.7 (2017) 847–855.
14. S. Ibrahim, R. Djemal, A. Alsuwailem, and S. Gannouni, Electroencephalography (EEG)-based epileptic seizure prediction using entropy and K-nearest neighbor (KNN), Commun. Sci. Technol. 2.1 (2017) 6–10.
15. J. Meng, L. Yao, X. Sheng, D. Zhang, and X. Zhu, Simultaneously Optimizing Spatial Spectral Features Based on Mutual Information for EEG Classification, IEEE Trans. Biomed. Eng. 62.1 (2015) 227–240.
16. T. Kayikcioglu and O. Aydemir, A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data, Pattern Recognit. Lett. 31.11 (2010) 1207–1215.
17. P. G. Rodrigues, C. A. S. Filho, R. Attux, G. Castellano, and D. C. Soriano, Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces, Med. Biol. Eng. Comput. 57.8 (2019) 1709–1725.
18. S. Razi, M. R. Karami Mollaei, and J. Ghasemi, A novel method for classification of BCI multi-class motor imagery task based on Dempster–Shafer theory, Inf. Sci. (Ny). 484 (2019) 14–26.
19. B. E. Olivas-Padilla and M. I. Chacon-Murguia, Classification of multiple motor imagery using deep convolutional neural networks and spatial filters, Appl. Soft Comput. J. 75 (2019) 461–472.
20. B. Xu et al., Wavelet Transform Time-Frequency Image and Convolutional Network-Based Motor Imagery EEG Classification, IEEE Access 7 (2019) 6084–6093.
21. S. U. Amin, M. Alsulaiman, G. Muhammad, M. A. Mekhtiche, and M. Shamim Hossain, Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion, Futur. Gener. Comput. Syst. 101 (2019) 542–554.
22. T. Nguyen, A. Khosravi, D. Creighton, and S. Nahavandi, Fuzzy system with tabu search learning for classification of motor imagery data, Biomed. Signal Process. Control 20 (2015) 61–70.
23. R. Liu, Z. Zhang, F. Duan, X. Zhou, and Z. Meng, Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms, Comput. Intell. Neurosci. 2017 (2017) 1–12.
24. M. Tangermann et al., Review of the BCI competition IV, Front. Neurosci. 6 (2012) 1–31.
25. J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (2006) 1–30.
26. J. Liu, Y. Lin, Y. Li, W. Weng, and S. Wu, Online multi-label streaming feature selection based on neighborhood rough set, Pattern Recognit. 84 (2018) 273–287.
27. Siuly and Y. Li, A novel statistical algorithm for multiclass EEG signal classification, Eng. Appl. Artif. Intell. 34 (2014) 154–167.
28. P. K. Pattnaik and J. Sarraf, Brain Computer Interface issues on hand movement, J. King Saud Univ. - Comput. Inf. Sci. 30.1 (2018) 18–24.
29. S.-H. Park, D. Lee, and S.-G. Lee, Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification, IEEE Trans. Neural Syst. Rehabil. Eng. 26.2 (2018) 498–505.