Internal content classification of ultrasound thyroid nodules based on textural features

Main Article Content

Hanung Adi Nugroho
Noor Akhmad Setiawan
Lina Choridah

Abstract

Ultrasound (US) is one of the best imaging modalities on thyroid identification. The suspicious thyroid is indicated in the existence of palpable nodules whose solid or cystic composition. Solid nodules have high possibility to be malignant than cystic. An effort to detect and classify the internal content of thyroid nodule has become challenge problem in radiology area. Operator dependence of ultrasound imaging makes it complicated due to missing interpretation among radiologists. Objective Computer Aided Diagnosis (CAD) was designed to solve it which works on texture analysis of histogram statistic, gray level co-occurrence matrice (GLCM) and gray level run length matrices (GLRLM). The fine-needle aspiration cytology (FNAC) is not needed because the textural pattern is significantly different between solid and cystic nodules.  Multi-layer perceptron (MLP) was adopted to do classification process for 72 US thyroid images yield an accuracy of 90.28%, the sensitivity of 87.80%, specificity of 93.55% and precision of 94.74%.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nugroho, A., Nugroho, H. A., Setiawan, N. A., & Choridah, L. (2016). Internal content classification of ultrasound thyroid nodules based on textural features. Communications in Science and Technology, 1(2). https://doi.org/10.21924/cst.1.2.2016.25
Section
Articles

References

1. I. Legakis, M. A. Savelonas, D. Maroulis, and D. K. Iakovidis, Computer-Based Nodule Malignancy Risk Assessment in Thyroid Ultrasound Images, Int. J. Comput. Appl. (2011).
2. G. Braunstein, Thyroid Cancer, (2012).
3. H. J. Moon, J. Y. Kwak, E.-K. Kim, M. J. Kim, C. S. Park, W. Y. Chung, and E. J. Son, The Combined Role of Ultrasound and Frozen Section in Surgical Management of Thyroid Nodules Read as Suspicious for Papillary Thyroid Carcinoma on Fine Needle Aspiration Biopsy: A Retrospective Study, World J. Surg. 33 (2009) 950–957.
4. H. G. Moon, E. J. Jung, S. T. Park, W. S. Ha, S. K. Choi, S. C. Hong, Y. J. Lee, Y. T. Joo, C. Y. Jeong, D. S. Choi, and J. W. Ryoo, Role of ultrasonography in predicting malignancy in patients with thyroid nodules, World J. Surg. 31 (2007) 1410–1416.
5. M. C. Frates, C. B. Benson, J. W. Charboneau, E. S. Cibas, O. H. Clark, B. G. Coleman, J. J. Cronan, P. M. Doubilet, D. B. Evans, J. R. Goellner, I. D. Hay, B. S. Hertzberg, C. M. Intenzo, R. B. Jeffrey, J. E. Langer, P. R. Larsen, S. J. Mandel, W. D. Middleton, C. C. Reading, S. I. Sherman, and F. N. Tessler, Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement, Ultrasound Q. 22 (2006) 231-240.
6. T.-C. Chang, The Role of Computer-aided Detection and Diagnosis System in the Differential Diagnosis of Thyroid Lesions in Ultrasonography, J. Med. Ultrasound. 23 (2015) 177–184.
7. M. Savelonas, D. Maroulis, and M. Sangriotis, A computer-aided system for malignancy risk assessment of nodules in thyroid US images based on boundary features, Comput. Methods Programs Biomed. 96 (2009) 25–32.
8. W.J. Moon, S. L. Jung, J. H. Lee, D. G. Na, J.-H. Baek, Y. H. Lee, J. Kim, H. S. Kim, J. S. Byun, and D. H. Lee, Benign and malignant thyroid nodules: US differentiation--multicenter retrospective study, Radiology. 247 (2008) 762–770.
9. A. Gürsoy and M. F. Erdoğan, Ultrasonographic Approach to Thyroid Nodules : State of Art, Thyroid Int. (2012).
10. C. Chang, M. Tsai, and S. Chen, Classification of the Thyroid Nodules Using Support Vector Machine, (2008) 3093–3098.
11. M. P. Wachowiak, a. S. Elmaghraby, R. Smolikova, and J. M. Zurada, Classification and estimation of ultrasound speckle noise withneural networks, Proc. IEEE Int. Symp. Bio-Informatics Biomed. Eng. (2000).
12. D. a. Clausi, An analysis of co-occurrence texture statistics as a function of grey level quantization, Can. J. Remote Sens. 28 (2002) 45–62.
13. H. Wibawanto and A. Susanto, Discriminating Cystic and Non Cystic Mass using GLCM and GLRLM-based Texture Features, Int. J. Electronic Engineering Research. 2 (2010) 569–580.
14. R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural Features for Image Classification, IEEE Trans. Syst. Man. Cybern. 3 (1973).
15. R. M. Haralick, Statistical and structural approaches to texture, Proc. IEEE. 67(1979) 786–804.
16. M. M. Galloway, Texture analysis using gray level run lengths, Comput. Graph. Image Process. 4 (1975) 172–179.
17. A. K. Jain, Fundamentals of digital image processing, 46 (1989).
18. A. Kadir and A. Susanto, Image Processing Teory and Application 1(in Indonesian), (2012).
19. R. M. Harralick, Statistical and structural approach to texture, Proceeding IEEE. 67 (1979) 786–804.
20. S. D. Newsam and C. Kamath, Comparing Shape and Texture Features for Pattern Recognition in Simulation Data, (2005) 106–117.
21. A. Kadir and A. Susanto, Image Processing Teory and Application 2(in Indonesian), (2012).
22. U. Gray, L. C. Matrices, L. Soh, C. Tsatsoulis, and S. Member, Texture Analysis of SAR Sea Ice Imagery, 37 (1999) 780–795.
23. X. Tang, Texture Information in Run-Length Matrices, 7 (1998) 1602–1609.
24. A. Chu, C. M. Sehgal, and J. F. Greenleaf, Use of gray value distribution of run lengths for texture analysis, Pattern Recognit. Lett, 11 (1990) 415–419.
25. B. V. Dasarathy and E. B. Holder, Image characterizations based on joint gray level—run length distributions, Pattern Recognit. Lett, 12 (1991) 497–502.
26. H. Demuth, Neural Network Toolbox, (2000).
27. R. Duda, P. Hart, and D. Stork, Pattern Classification, (1973).
28. S. Haykin, Neural Networks and Learning Machines, 3 (2008).