Corncob residue as heterogeneous acid catalyst for green synthesis of biodiesel: A short review

Main Article Content

Primata Mardina
Hesti Wijayanti
Abubakar Tuhuloula
Erita Hijriyati


The utilization of an appropriate catalyst in biodiesel production depends on the free fatty acid content of vegetable oil as a feedstock. Recently, heterogeneous acid catalysts are widely chosen for biodiesel production. However, these catalysts are non-renewable, highly expensive and low stability. Due to the aforementioned drawbacks of commercial heterogeneous acid catalyst, a number of efforts have been made to develop renewable green solid acid catalysts derived from biomass. Published literature revealed that the application of the biomass derived solid acid catalysts can achieve up to 98% yield of biodiesel. This article focused on corncob as raw material in solid acid catalyst preparation for biodiesel production. The efficient preparation method and performance comparation are discussed here. The corncob derived heterogeneous acid catalysts provides an environmentally friendly and green synthesis for biodiesel production.


Download data is not yet available.

Article Details

How to Cite
Mardina, P., Wijayanti, H., Tuhuloula, A., Hijriyati, E., & Sarifah. (2021). Corncob residue as heterogeneous acid catalyst for green synthesis of biodiesel: A short review. Communications in Science and Technology, 6(2), 60-68.


A. L. Ahmad, N. H. M. Yasin, C. J. C. Derek, & J. K. Lim, Microalgae as a sustainable energy source for biodiesel production: A review. Renew Sustain Energy Rev, 15 (2011) 584–593.

M. E. Borges & L. Díaz, Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions : A review. Renew Sustain Energy Rev, 16 (2012) 2839–2849.

B. Singh, A. Guldhe, I. Rawat, & F. Bux, Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew Sustain Energy Rev, 29 (2014) 216–245.

Y. M. Sani, W. M. A. W. Daud, & A. R. Abdul Aziz, Activity of solid acid catalysts for biodiesel production: A critical review. Appl Catal A: Gen, 470 (2014) 140–161.

N. Sarkar, S. K. Ghosh, S. Bannerjee, & K. Aikat, Bioethanol production from agricultural wastes: An overview. Renew Energy, 37 (2012) 19–27.

M. F. Rabiah Nizah, Y. H. Taufiq-Yap, U. Rashid, S. H. Teo, Z. A. Shajaratun Nur, & A. Islam, Production of biodiesel from non-edible Jatropha curcas oil via transesterification using Bi2O3-La2O3 catalyst. Energy Convers Manag., 88 (2014) 1257–1262.

P. Mardina, C. Irawan, M. D. Putra, S. B. Priscilla, M. Misnawati, & I. F. Nata, Bioethanol Production from Cassava Peel Treated with Sulfonated Carbon Catalyzed Hydrolysis. J. kim. sains apl., 24 (2021) 1–8.

B. L. A. P. Devi, T. V. K. Reddy, K. V. Lakshmi, & R. B. N. Prasad, A green recyclable SO3H-carbon catalyst derived from glycerol for the production of biodiesel from FFA-containing karanja ( Pongamia glabra ) oil in a single step. Bioresour Technol., 153 (2014) 370–373.

Z. Yaakob, M. Mohammad, M. Alherbawi, Z. Alam, & K. Sopian, Overview of the production of biodiesel from Waste cooking oil. Renew Sustain Energy Rev, 18 (2013) 184–193.

Z. A. Shajaratun Nur, Y. H. Taufiq-Yap, M. F. Rabiah Nizah, S. H. Teo, O. N. Syazwani, & A. Islam, Production of biodiesel from palm oil using modified Malaysian natural dolomites. Energy Convers Manag., 78 (2014) 738–744.

M. Takase, T. Zhao, M. Zhang, Y. Chen, H. Liu, L. Yang, & X. Wu, An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties. Renew Sustain Energy Rev, 43 (2015) 495–520.

A. M. Dehkhoda, A. H. West, & N. Ellis, Biochar based solid acid catalyst for biodiesel production. Appl Catal A: Gen, 382 (2010) 197–204.

D. Y. C. Leung, X. Wu, & M. K. H. Leung, A review on biodiesel production using catalyzed transesterification. Appl Energy, 87 (2010) 1083–1095.

S. H. Y. S. Abdullah, N. H. M. Hanapi, A. Azid, R. Umar, H. Juahir, H. Khatoon, & A. Endut, A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renew Sustain Energy Rev, 70 (2016) 1040–1051.

Z. Tang, S. Lim, Y. Pang, H. Ong, & K. Lee, Synthesis of biomass as heterogeneous catalyst for application in biodiesel production : State of the art and fundamental review. Renew Sustain Energy Rev, 92 (2018) 235–253.

I. Reyero, G. Arzamendi, S. Zabala, & L. M. Gandía, Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel. Fuel Process Technol., 129 (2015) 147–155.

K. Neumann, K. Werth, A. Martín, & A. Górak, Biodiesel production from waste cooking oils through esterification: Catalyst screening, chemical equilibrium and reaction kinetics. Chem Eng Res Des, 107 (2016) 52–62.

A. Islam, Y. H. Taufiq-Yap, E. S. Chan, M. Moniruzzaman, S. Islam, & M. N. Nabi, Advances in solid-catalytic and non-catalytic technologies for biodiesel production. Energy Convers Manag., 88 (2014) 1200–1218.

S. Semwal, A. K. Arora, R. P. Badoni, & D. K. Tuli, Biodiesel production using heterogeneous catalysts. Bioresour Technol., 102 (2011) 2151–2161.

L. J. Konwar, J. Boro, & D. Deka, Review on latest developments in biodiesel production using carbon-based catalysts. Renew Sustain Energy Rev, 29 (2014) 546–564.

N. Mansir, Y. H. Taufiq-yap, U. Rashid, & I. M. Lokman, Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production : A review. Energy Convers Manag., (2016).

Y. D. Long, Z. Fang, T. C. Su, & Q. Yang, Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts. Appl Energy, 113 (2014) 1819–1825.

Y. M. Sani, W. M. A. W. Daud, & A. R. Abdul Aziz, Solid acid-catalyzed biodiesel production from microalgal oil - The dual advantage. J Environ Chem Eng, 1 (2013) 113–121.

F. Ezebor, M. Khairuddean, A. Z. Abdullah, & P. L. Boey, Esterification of oily-FFA and transesterification of high FFA waste oils using novel palm trunk and bagasse-derived catalysts. Energy Convers Manag., 88 (2014) 1143–1150.

M. Tariq, S. Ali, & N. Khalid, Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review. Renew Sustain Energy Rev, 16 (2012) 6303–6316.

A. Takagaki, M. Toda, M. Okamura, J. N. Kondo, S. Hayashi, K. Domen, & M. Hara, Esterification of higher fatty acids by a novel strong solid acid. Catal Today, 116 (2006) 157–161.

A. Galadima & O. Muraza, Biodiesel production from algae by using heterogeneous catalysts: A critical review. Energy, 78 (2014) 72–83.

S. H. Teo, M. Goto, & Y. H. Taufiq-Yap, Biodiesel production from Jatropha curcas L. oil with Ca and La mixed oxide catalyst in near supercritical methanol conditions. J Supercritical Fluids, 104 (2015) 243–250.

A. P. S. Chouhan & A. K. Sarma, Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renew Sustain Energy Rev, 15 (2011) 4378–4399.

E. Taer, L. Pratiwi, Apriwandi, W. S. Mustika, R. Taslim, & Agustino, Three-dimensional pore structure of activated carbon monolithic derived from hierarchically bamboo stem for supercapacitor application. CST, 5 (2020) 22–30.

A. B. D. Nandiyanto, G. C. S. Girsang, R. Maryanti, R. Ragadhita, S. Anggraeni, F. M. Fauzi, P. Sakinah, et al., Isotherm adsorption characteristics of carbon microparticles prepared from pineapple peel waste. CST, 5 (2020) 31–39.

A. Chafidz, A. R. Afandi, B. M. Rosa, J. Suhartono, P. Hidayat, & H. Junaedi, Production of silver nanoparticles via green method using banana raja peel extract as a reducing agent. CST, 5 (2020) 112–118.

I. F. Nata, C. Irawan, P. Mardina, & C. Lee, Carbon-based strong solid acid for cornstarch hydrolysis. J Solid State Chem, 230 (2015) 163–168.

D. R. Lathiya, D. V Bhatt, & K. C. Maheria, Synthesis of sulfonated carbon catalyst from waste orange peel for cost effective biodiesel production. Bioresour Technol Rep, 2 (2018) 69–76.

F. Ezebor, M. Khairuddean, A. Z. Abdullah, & P. L. Boey, Oil palm trunk and sugarcane bagasse derived heterogeneous acid catalysts for production of fatty acid methyl esters. Energy, 70 (2014) 493–503.

X. Liu, M. Huang, H. Ma, Z. Zhang, J. Gao, Y. Zhu, X. Han, & X. Guo, Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process. Molecules, 15 (2010) 7188–7196.

J. R. Kastner, J. Miller, D. P. Geller, J. Locklin, L. H. Keith, & T. Johnson, Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal Today, 190 (2012) 122–132.

F. E. Babadi, S. Hosseini, S. M. Soltani, M. K. Aroua, A. Shamiri, & M. Samadi, Sulfonated Beet Pulp as Solid Catalyst in One-Step Esterification of Industrial Palm Fatty Acid Distillate. J Am Oil Chem Soc, 93 (2016) 319–327.

H. Ma, J. Li, W. Liu, B. Cheng, X. Cao, J. Mao, & S. Zhu, Hydrothermal Preparation and Characterization of Novel Corncob- Derived Solid Acid Catalysts. J Agric Food Chem, 62 (2014) 5345–5353.

S. Pandian, S. S. Arumugamurthi, P. Sivanandi, M. Santra, & V. K. Booramurthy, 4-Application of heterogeneous acid catalyst derived from biomass for biodiesel process intensification: a comprehensive review. Refining Biomass Residues for Sustainable Energy and Bioproducts. Academic Press, 2020.

Z. Liu, A. Quek, S. K. Hoekman, & R. Balasubramanian, Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel, 103 (2013) 943–949.

S. De, M. Balu, J. C. Van Der Waal, & R. Luque, Biomass-Derived Porous Carbon Materials : Synthesis and Catalytic Applications. ChemCatCHem, 7 (2015) 1608–1629.

M. Li, Y. Zheng, Y. Chen, & X. Zhu, Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour Technol., 154 (2014) 345–348.

F. A. Dawodu, O. Ayodele, J. Xin, S. Zhang, & D. Yan, Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst. Appl Energy, 114 (2014) 819–826.

Ministry of Agriculture, Petunjuk Pelaksanaan Kegiatan Budidaya Jagung Tahun 2017. Jakarta, 2018.

J. A. Kabalmay, E. Suryanto, & M. R. J. Runtuwene, Nano Kitosan Ekstrak Tongkol Jagung Manado Kuning ( Zea Mays L .) Dan Aktivitas Antioksidannya. Chem Prog, 12 (2019) 13–18.

W. Qu, Y. Xu, A. Lu, X. Zhang, & W. Li, Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresour Technol., 189 (2015) 285–291.

S. Prasad, A. Singh, & H. C. Joshi, Ethanol as an alternative fuel from agricultural , industrial and urban residues. Resour Conserv Recycl, 50 (2007) 1–39.

M. Takada, R. Niu, E. Minami, & S. Saka, Characterization of three tissue fractions in corn (Zea mays) cob. Biomass Bioenergy, 115 (2018) 130–135.

R. A. Arancon, H. R. Barros Jr, A. M. Balu, C. Vargas, & R. Luque, Valorisation of corncob residues to functionalised porous carbonaceous materials for the simultaneous esterification / transesterification of waste. Green Chem., 13 (2011) 3162–3167.

P. D. Rocha, L. S. Oliveira, & A. S. Franca, Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification. Renew Energy, 143 (2019) 1710–1716.

W. Mateo, H. Lei, E. Villota, M. Qian, Y. Zhao, E. Huo, Q. Zhang, X. Lin, C. Wang, & Z. Huang, Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics. Bioresour Technol., 297 (2020) 122411.

S. F. Ibrahim, N. Asikin-mijan, M. L. Ibrahim, G. Abdulkareem-alsultan, S. M. Izhma, & Y. H. Taufiq-yap, Sulfonated functionalization of carbon derived corncob residue via hydrothermal synthesis route for esterification of palm fatty acid distillate. Energy Convers Manag., 210 (2020) 112698.

A. Shariff, N. S. M. Aziz, N. I. Ismail, & N. Abdullah, Corn cob as a potential feedstock for slow pyrolysis of biomass. J Phys Sci, 27 (2016) 123–137.

M. Garcia-Perez, A. Chaala, & C. Roy, Vacuum pyrolysis of sugarcane bagasse. J Anal Appl Pyrolysis, 65 (2002) 111–136.

R. N. Singh, D. K. Vyas, N. S. L. Srivastava, & M. Narra, SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy. Renew Energy, 33 (2008) 1868–1873.

I. Brodin, Chemical Properties and Thermal Behaviour of Kraft Lignins. Stockholm. KTH Royal Institute of Technology, 2009.

C. M. Mendaros, A. W. Go, W. J. T. Nietes, B. E. J. O. Gollem, & L. K. Cabatingan, Direct sulfonation of cacao shell to synthesize a solid acid catalyst for the esteri fi cation of oleic acid with methanol. Renew Energy, 152 (2020) 320–330.

Z. Hussain & R. Kumar, Synthesis And Characterization Of Novel Corncob- Based Solid Acid Catalyst For Biodiesel Production. Ind Eng Chem Res, 57 (2018) 11645–11657.

Z. Tang, S. Lim, Y. Pang, S. Shuit, & H. Ong, Utilization of biomass wastes based activated carbon supported heterogeneous acid catalyst for biodiesel production. Renew Energy, 158 (2020) 91–102.

V. Hernández-montoya & A. Bonilla-petriciolet, Lignocellulosic Precursors Used in the Synthesis of Activated Carbon:Characterization Techniques and Applications in the Wastewater Treatment. Croatia. InTech, 2012.

N. Mohamad Nor, L. L. Chung, L. K. Teong, & A. R. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control — a review. J Environ Chem Eng, 1 (2013) 658–666.

M. Hara, T. Yoshida, A. Takagaki, T. Takata, J. N. Kondo, S. Hayashi, & K. Domen, A carbon material as a strong protonic acid. Angew Chem Int Ed, 43 (2004) 2955–2958.

S. Rovani, A. G. Rodrigues, L. F. Medeiros, R. Cataluña, É. C. Lima, & A. N. Fernandes, Synthesis and characterisation of activated carbon from agroindustrial waste — Preliminary study of 17 b -estradiol removal from aqueous solution. J Environ Chem Eng, 4 (2016) 2128–2137.

I. F. Nata, M. D. Putra, D. Nurandini, & C. Irawan, Facile Strategy for Surface Functionalization of Corn Cob to Biocarbon and Its Catalytic Performance on Banana Peel Starch Hydrolysis. IJASEIT, 7 (2017) 1302–1308.

M. Titirici & M. Antonietti, Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev, 39 (2010) 103–116.

M. T. Reza, M. H. Uddin, J. G. Lynam, S. K. Hoekman, & C. J. Coronella, Hydrothermal carbonization of loblolly pine : reaction chemistry and water balance. Biomass Convers Biorefin, 4 (2014) 311–321.

M. Harmas, T. Thomberg, H. Kurig, T. Romann, A. Janes, & E. Lust, Microporous e mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride , potassium hydroxide or mixture of them. J Power Sources, 326 (2016) 624–634.

S. Akinfalabi, U. Rashid, R. Yunus, & Y. H. Taufiq-yap, Synthesis of biodiesel from palm fatty acid distillate using sulfonated palm seed cake catalyst. Renew Energy, 111 (2017) 611–619.

A. M. Dehkhoda & N. Ellis, Biochar-based catalyst for simultaneous reactions of esterification and transesterification. Catal Today, 207 (2013) 86–92.

I. M. Lokman, U. Rashid, Y. Hin, & R. Yunus, Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst. Renew Energy, 81 (2015) 347–354.

K. Ngaosuwan, J. G. Goodwin Jr., & P. Prasertdham, A green sulfonated carbon-based catalyst derived from coffee residue for esteri fi cation. Renew Energy, 86 (2016) 262–269.

M. Tao, H. Guan, X. Wang, Y. Liu, & R. Louh, Fabrication of sulfonated carbon catalyst from biomass waste and its use for glycerol esteri fi cation. Fuel Process Technol., 138 (2015) 355–360.

H. H. Mardhiah, H. Chyuan, H. H. Masjuki, S. Lim, & Y. Ling, Investigation of carbon-based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energy Convers Manag., 144 (2017) 10–17.

M. S. A. Farabi, M. L. Ibrahim, U. Rashid, & Y. Hin, Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Convers Manag., 181 (2019) 562–570.

Y. Zhou, S. Niu, & J. Li, Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Convers Manag., 114 (2016) 188–196.

A. P. da L. Correa, R. R. C. Bastos, G. N. da R. Filho, J. R. Zamian, & L. R. V. da Conceicao, Preparation of sulfonated carbon-based catalysts from murumuru kernel shell and their performance in the esterification reaction. RSC Adv., 10 (2020) 20245–20256.

I. Thushari & S. Babel, Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production. Bioresour Technol., 248 (2017) 199–203.