The gompertz exponential pareto distribution with the properties and applications to bladder cancer and hydrological datasets
Main Article Content
Abstract
Many existing distributions in literatures does not have the modeling fits capacity to adequately describe the real-life phenomena. The Exponential Pareto (EP) distribution has further gained some generalizations among several authors using different generator techniques with an aim to obtain a new distribution with greater flexibility. This article proposes Gompertz Exponential Pareto (GEP) distribution using the Gompertz generator. Findings from the study revealed some lifetime distributions as special cases and mathematical properties of the distribution investigated including the mean, variance, coefficient of variation, quantile, moment, moment generating function and, order statistics. The distribution can be positively or negatively skewed. It is unimodal with failure rates whose shapes could be reversed J bathtub, constant, decreasing and, increasing and the parameters were estimated using maximum likelihood estimation approach. Applications to two real-life datasets revealed the ability of GEP distribution to provide more flexibilities and better fit to the dataset compared to some previously proposed distributions for the data. The results also revealed that GEP had the superior performance over other generalizations of EP distribution existing in literatures and the performance has further strengthened the usefulness of the Gompertz-generator technique.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
M. H.Tahir, M. A. Hussain, G. M. Cordeiro, M. El-Morshedy and M. S. Eliwa, A new Kumaraswamy generalized family of distributions with properties, applications, and bivariate extension, Mathematics. 8 (2020) 1-28.
A. Alzaatreh, F. Famoye, and C. Lee. Gamma-Pareto distribution and its applications, J. Mod Appl. Stat. Methods, 11 (2012) 78-94.
A. Alzaatreh, C. Lee and F. Famoye, Weibull-Pareto distribution and its applications, Commun. Stat. Theory Methods, 42 (2013) 1673-1691.
M. Bouguignon, R. B. Silva, L. M. Zea and G. M. Cordeiro, The Kumaraswamy-pareto distribution, J. Stat. Theory Appl. 12 (2013) 129-144.
S. B. Chhetri, A. A. Akinsete, G. Aryal and H. Long, Kumaraswamy transmuted pareto distribution, J. Stat. Distrib. Appl. 4:11 (2017) 1-24.
E. E. E. Akarawak, I. A. Adeleke and R. O. Okafor, The weibull-rayleigh distribution and its properties, J. Eng. Res. 18 (2013) 56-67.
F. Famoye, E. E. E. Akarawak and M. Ekum. Weibull-normal distribution and its applications, J. Stat. Theory Appl. 17 (2018) 4-12.
U. Akata and J. E. Osemwenkhae, The weibull logistic-exponential distribution: its properties and applications, Earthline J. Math. Sci. 5 (2020) 197-216.
A. A. Al-Kadim and M. A Boshi, Exponential Pareto distribution, Math. theory model., 3 (2013) 135-146.
A. Luguterah, and S. Nasiru, Transmuted exponential Pareto distribution, Far East J. Theor. Stat. 50 (2015) 31-49.
I. Elbatal and G. Aryal, A new generalization of the exponential distribution, J. Inf. Optim. Sci. 38 (2017) 675-697.
H. Salem, Exponentiated exponential Pareto distribution: properties and estimation, Adv. & Appl. in Stat. 57 (2019) 89-104.
G. Aryal, On the beta exponential Pareto distribution, Stat. Optim. Inf. Comput. 7 (2019) 417-438.
N. I .Rashwan and M. M. Kamel, The beta exponential Pareto distribution, Far East J. Theor. Stat. 58 (2020) 91-113.
B. Gompertz , On the nature of the function of expressive of the law of human mortality and on new mode of determining the value of life contingencies, Philos. Trans. R. Soc. Lond., B, Biol. Sci. 182 (1824) 513-585.
T. G. leren, F. M. Kromtit, B. U. Agbor, I. B. Eraikhuemen and P. P. Koleoso, A power Gompertz distribution: model, properties and application to bladder cancer data, Asian Res. J. Math. 15 (2019) 1-14.
M. Alizadeh, G. M. Cordeiro, P. L. G. Bastos and I. Ghosh, The Gompertz-G family of distributions. J Stat Theory Pract 11 (2017) 179-207.
P. E. Oguntunde, M. A. Khaleel, H. I. Okagbue, A. A. Opanuga and F. O. Owolabi, The Gompertz inverse exponential (GoIE) distribution with Application, Cogent math. Stat. (2018) 1-17.
J. A. Adewara, J. S. Adeyeye, The comparative study of Gompertz exponential distribution and other three parameter distributions of exponential class, CJPL. 8 (2020) 1-13.
P. E. Oguntunde, M. A. Kheleel, T. A. Mohammed and I. O.Hilary, The Gompertz frechet distribution: properties and applications, Cogent math. Stat. 6 (2019) 1-12.
P. O. Koleoso, A. U. Chukwu and T. A. Bamiduro, A three parameter Gompertz lindley distribution: its properties and applications, Math. theory model., 9 (2019) 29-42.
M. A. Khaleel, P. E. Oguntunde, M. T. Ahmed and N. O. Ibrahim, The Gompertz flexible weibull distribution and its applications, Malays. J. Math. Sci., 14 (2020) 169-190.
J. T. Eghwerido, L. Nzei, I. David and O. Adubisi, The gompertz extended generalized exponential distribution: properties and applications, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (2020) 739-753.
P. E. Oguntunde, M. A. Khaleel, M. T. Ahmed, A. O. Adejumo and O. A. Odetunmibi, A new generalization of the Lomax distribution with increasing, decreasing and constant failure rate, Model. Simul. Eng., 2017 (2017) 1-6.
J. T. Eghwerido, S. C. Zelibe and E. Efe-Eyefia, Gompertz –alpha power inverted exponential distribution: properties and applications, Thailand Stat., 18 (2020) 319-332.
F. B. Mohammed, K. A. Manju, U. K. Abdullahi, M. M. Sani and S. Kuje, A study of some properties and goodness of –fit of a Gompertz-rayleigh mode, Asian J. Probab. Stat, 9 (2020) 18-31.
A. A. Ogunde, G. A. Olalude and D. O. Omosigho, The Gompertz gumbel II distribution : properties and applications, Acad. J. Appl. Math. Sci.. 7 (2021) 1-15.
H. A. David and H. N. Nagaraja. Oder statistics. John Wiley, NY. 2003.
B. C. Arnold, N. Balakrishnan and N. H. Nagaraja. A first course in order statistics. John Wiley, New York 1992.
P. R. D. Marinho, M. Bourguignon and C. R. B. Dias. R-package- adequacy model. https://cran.r- project.org/web/packages/AdequacyModel//AdequacyModel.pdf.
E. T. Lee and J. Wang, Statistical methods for survival data analysis. Wiley, New York, 2003.
I. Elbatal, and H. Z. Muhammed , Exponentiated generalized inverse weibull distribution, Appl. Math. Sci. 8 (2014) 3997-4012.
A. Ateeq, T. B. Qasim and A. R. Alvi, An extension of Rayleigh distribution and applications, Cogent math. Stat. 6 (2019) 1-16.