Interference effect during word-task and colour-task in incongruent stroop-task

Main Article Content

Christianus Frederick Hotama
Hanung Adi Nugroho
Indah Soesanti
Widhia KZ Oktoeberza

Abstract

Stroop-task is one of the most popular studies to check the ability of decision-making and cognitive process during high interference activity in the brain.  In the incongruent Stroop-task, the difference between the colour that we read and the colour that we see produces high interference activities in the brain.  This research aims to analyse the activity differences in each part of the brain during colour-task and word-task.  This study investigates how well the ability of decision-making and cognitive process during high interference activities that occur in the brain.  Electroencephalography (EEG) can record brain activities by recording the brain waves.  The results show that recognising the colour is more difficult than that of the written words in the Stroop-task as indicated by statistical test with t-value greater than threshold value (t>2.0027) and significant level of 0.05.  This study concludes that the colour-task gives more interference effect than the word-task.  The more interference effect is produced, the more wrong decision-making is obtained. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Hotama, C. F., Nugroho, H. A., Soesanti, I., & Oktoeberza, W. K. (2017). Interference effect during word-task and colour-task in incongruent stroop-task. Communications in Science and Technology, 2(2). https://doi.org/10.21924/cst.2.2.2017.59
Section
Articles
Author Biography

Hanung Adi Nugroho, Universitas Gadjah Mada

Assistant Professor

Department of Electrical Engineering and Information Technology

References

1. C. M. MacLeod, Half a century of research on the Stroop effect: an integrative review, Psychological bulletin. 109 (1991) 163.

2. J. R. Stroop, Studies of interference in serial verbal reactions, Journal of experimental psychology. 18 (1935) 643.

3. B. S. Peterson, P. Skudlarski, J. C. Gatenby, H. Zhang, A. W. Anderson, and J. C. Gore, An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems, Biological psychiatry. 45 (1999) 1237-1258.

4. S. F. Taylor, S. Kornblum, E. J. Lauber, S. Minoshima, and R. A. Koeppe, Isolation of specific interference processing in the Stroop task: PET activation studies, Neuroimage. 6 (1997) 81-92.

5. C. S. Carter, M. Mintun, and J. D. Cohen, Interference and facilitation effects during selective attention: an H 2 15 O PET study of Stroop task performance, Neuroimage. 2 (1995) 264-272.

6. J. V. Pardo, P. J. Pardo, K. W. Janer, and M. E. Raichle, The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm, Proceedings of the National Academy of Sciences. 87 (1990) 256-259.

7. M.-A. Vanderhasselt, R. De Raedt, and C. Baeken, Dorsolateral prefrontal cortex and Stroop performance: Tackling the lateralization, Psychonomic bulletin & review. 16 (2009) 609-612.

8. C. P. Coste, S. Sadaghiani, K. J. Friston, and A. Kleinschmidt, Ongoing brain activity fluctuations directly account for intertrial and indirectly for intersubject variability in Stroop task performance, Cerebral cortex. 21 (2011) 2612-2619.

9. R. Cabeza and L. Nyberg, Imaging Cognition II: An Empirical Review of 275 PET and fMRI Studies, Journal of Cognitive Neuroscience. 12 (2000) 1-47.

10. D. L. Schomer and F. L. Da Silva, Niedermeyer's electroencephalography: basic principles, clinical applications, and related fields: Lippincott Williams & Wilkins, 2012.

11. M. D. Rugg and M. G. Coles, Electrophysiology of mind: Event-related brain potentials and cognition: Oxford University Press, 1995.

12. Y. Feng, C.-L. Zhou, J.-C. Zhang, and M.-L. Tian, Neural Mechanisms of Intuitive Tactical Decision-making Predominance of High-level Fencing Athletes, Journal of Medical and Biological Engineering. 30 (2010) 47-56.

13. S. Hoehl and S. Wahl, Recording infant ERP data for cognitive research, Developmental Neuropsychology. 37 (2012) 187-209.

14. G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw, BCI2000: a general-purpose brain-computer interface (BCI) system, IEEE Transactions on biomedical engineering. 51 (2004) 1034-1043.

15. N. Yan, J. Wang, M. Liu, L. Zong, Y. Jiao, J. Yue, et al., Designing a brain-computer interface device for neurofeedback using virtual environments, Journal of Medical and Biological Engineering. 28 (2008) 167-172.

16. C.-T. Lin, F.-C. Lin, S.-A. Chen, S.-W. Lu, T.-C. Chen, and L.-W. Ko, EEG-based brain-computer interface for smart living environmental auto-adjustment, Journal of Medical and Biological Engineering. 30 (2010) 237-245.

17. B. Schack, A. C. Chen, S. Mescha, and H. Witte, Instantaneous EEG coherence analysis during the Stroop task, Clinical Neurophysiology. 110 (1999) 1410-1426.

18. D. Szűcs, C. Killikelly, and S. Cutini, Event-related near-infrared spectroscopy detects conflict in the motor cortex in a Stroop task, Brain research. 1477 (2012) 27-36.

19. C. Nombela, M. Nombela, P. Castell, T. García, J. López-Coronado, and M. T. Herrero, Alpha-Theta Effects Associated with Ageing during the Stroop Test, PloS one. 9 (2014) e95657.

20. R. Cabeza, S. M. Daselaar, F. Dolcos, S. E. Prince, M. Budde, and L. Nyberg, Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval, Cerebral cortex. 14 (2004) 364-375.

21. J. M. Bugg, E. L. DeLosh, D. B. Davalos, and H. P. Davis, Age differences in Stroop interference: Contributions of general slowing and task-specific deficits, Aging, Neuropsychology, and Cognition. 14 (2007) 155-167.

22. C. Michel, D. Lehmann, B. Henggeler, and D. Brandeis, Localization of the sources of EEG delta, theta, alpha and beta frequency bands using the FFT dipole approximation, Electroencephalography and clinical neurophysiology. 82 (1992) 38-44.

23. W. Herrmann, K. Fichte, and G. Freund, Reflections on the topics: EEG frequency bands and regulation of vigilance, Pharmacopsychiatry. 12 (1979) 237-245.

24. A. A. Fingelkurts and A. A. Fingelkurts, EEG oscillatory states: universality, uniqueness and specificity across healthy-normal, altered and pathological brain conditions, PLoS One. 9 (2014) e87507.

25. S. Zysset, K. Müller, G. Lohmann, and D. Y. von Cramon, Color-word matching Stroop task: separating interference and response conflict, Neuroimage. 13 (2001) 29-36.

26. A. Delorme and S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, Journal of neuroscience methods. 134 (2004) 9-21.

27. D. Floden, A. Vallesi, and D. T. Stuss, Task context and frontal lobe activation in the Stroop task, Journal of Cognitive Neuroscience. 23 (2011) 867-879.

28. J. Duff, The usefulness of quantitative EEG (QEEG) and neurotherapy in the assessment and treatment of post-concussion syndrome, Clinical EEG and Neuroscience. 35 (2004) 198-209.