A robust automated system for detecting and recognising the digit of electrical energy consumption number of the postpaid kWh-meter

Main Article Content

Herryawan Pujiharsono
Hanung Adi Nugroho
Oyas Wahyunggoro

Abstract

Most of the processes of kilowatt-hour meter (kWh-meter) reading in Indonesia are still in manual process which may lead to some problems, such as time consumption and high possibility of data entry errors.  Therefore, this study proposes an automated system to minimise these problems.  This system is developed for the image with uneven illumination condition and tilted position of stand kWh-meter due to the unavoidable situation while capturing the kWh-meter image.  In this study, the illumination problem is solved by local thresholding and the tilted position of stand kWh-meter is solved by combination of morphology operations and vertical edge detection on the location detection process and vertical-horizontal projections on the segmentation process.  Finally, the numeral recognition is performed by support vector machine (SVM) classifier with zonal density feature as a selected input.  The results show that the accuracy of proposed system is 93.55% on detection location process, 89.38% on segmentation process, and 78.10% on numeral recognition process.

Downloads

Download data is not yet available.

Article Details

How to Cite
Pujiharsono, H., Nugroho, H. A., & Wahyunggoro, O. (2017). A robust automated system for detecting and recognising the digit of electrical energy consumption number of the postpaid kWh-meter. Communications in Science and Technology, 2(2). https://doi.org/10.21924/cst.2.2.2017.61
Section
Articles

References

1. E. Ardianto, V. Lusiana, and W. Hadikurniawati, “Rancang Bangun Aplikasi Pengolah Gambar Digital untuk Segmentasi Otomatis Lokasi Objek Angka pada Meter Listrik,” J. Tek. Inf. Din., vol. 16, no. 2, pp. 110–117, 2011.

2. M. Setiawan, “Teknik Pengendalian Kualitas Pembacaan Angka kWh-meter Menggunakan I-MR (Individual-Moving Range) Control Chart,” Lampung, 2010.

3. A. E. Shaputra and A. Nugraha, “Sistem Kerja Automatic Meter Reading dengan Menggunakan Media Power Line Carrier 220V di Kawasan Pondok Indah,” Jakarta, 2011.

4. D. Pramaharsi, “Penanganan Teks ‘PERIKSA’ pada kWh-meter Prabayar di PT. PLN (Persero) Rayon Kota Yogyakarta,” Universitas Gadjah Mada, 2013.

5. PT. PLN, “Term Of Reference (TOR) Pekerjaan Jasa Manajemen Billing PT. PLN Distribusi Jawa Tengah dan D.I. Yogyakarta Tahun 2013 s/d 2018.” Semarang, 2013.

6. C. J. Lakshmi, D. A. J. Rani, D. K. S. Ramakrishna, and M. KantiKiran, “A Novel Approach for Indian License Plate Recognition System,” Int. J. Adv. Eng. Sci. Technol., vol. 6, no. 1, pp. 10–14, 2011.

7. R. Gunawan, S. Suwarno, and W. Hapsari, “Penerapan Optical Character Recognition (OCR) untuk Pembacaan Meteran Listrik PLN,” INFORMATIKA, vol. 10, no. 2, pp. 127–134, 2014.

8. A. Sudiarso and R. J. Merischaputri, “An Automation of Electricity Usage Reading on Postpaid kWh Meter using Kohonen-Type Artificial Neural Network,” Int. J. Mining, Metall. Mech. Eng., vol. 1, no. 4, pp. 238–240, 2013.

9. R. J. Merischaputri, “Otomasi Pembacaan Data Penggunaan Listrik pada kWh-meter Pascabayar untuk Mengurangi Waktu Proses Pengambilan Data Menggunakan Pendekatan Jaringan Syaraf Tiruan Bertipe Kohonen,” Universitas Gadjah Mada, 2013.

10. R. J. Merischaputri, “Otomasi Pembacaan Data Penggunaan Listrik pada kWh Meter Pascabayar untuk Mengurangi Waktu Proses Pengambilan Data dan Perhitungan Tagihan Listrik Menggunakan Pendekatan Jaringan Syaraf Tiruan,” Universitas Gadjah Mada, 2014.

11. J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,” Pattern Recognit., vol. 33, no. 2, pp. 225–236, 2000.

12. Y. Yang and H. Yan, “An Adaptive Logical Method for Binarization of Degraded Document Images,” Pattern Recognit., vol. 33, no. 2000, pp. 787–807, 2000.

13. N. Ntogas and D. Veintzas, “A binarization algorithm for historical manuscripts,” in Proceedings of the 12th WSEAS International Conference on Communications, 2008, pp. 41–51.

14. Y. Qiu, M. Sun, and W. Zhou, “License Plate Extraction Based on Vertical Edge Detection and Mathematical Morphology,” in 2009 International Conference on Computational Intelligence and Software Engineering, 2009, pp. 1–5.

15. A. Wang, X. Liu, Y. Han, and C. Qi, “License Plate Location Algorithm Based on Edge Detection and Morphology,” 2012 7th International Forum on Strategic Technology (IFOST). pp. 1–4, 2012.

16. T. S. Rajashree and T. K. Renugha, “Vehicle License Plate Detection using Vertical Edge Detection,” Int. J. Eng. Res. Technol., vol. 3, no. 10, pp. 1225–1232, 2014.

17. B. Enyedi, L. Konyha, C. Szombathy, and K. Fazekas, “Strategies for fast license plate number localization,” in Proceedings Elmar - International Symposium Electronics in Marine, 2004, pp. 579–584.

18. R. Chen and Y. Luo, “An Improved License Plate Location Method Based On Edge Detection,” in Physics Procedia, 2012, vol. 24, pp. 1350–1356.

19. C. C. Lin and W. H. Huang, “Locating License Plate Based on Edge Features of Intensity and Saturation Subimages,” Second Int. Conf. Innov. Comput. Inf. Control. ICICIC 2007, vol. 2, no. 59, pp. 2–5, 2008.

20. J. Jagannathan, A. Sherajdheen, R. M. Vijay Deepak, and N. Krishnan, “License Plate Character Segmentation Using Horizontal and Vertical Projection with Dynamic Thresholding,” in 2013 IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology, ICE-CCN 2013, 2013, pp. 700–705.

21. K. Parasuraman and P. V. Kumar, “An Efficient Method for Indian Vehicle License Plate Extraction and Character Segmentation,” in IEEE International Conference on Computational Intelligence and Computing Research, 2010.

22. B. Santosa, “Tutorial Support Vector Machine.” Surabaya, pp. 1–23, 2005.

23. K. Singh Siddharth, R. Dhir, and R. Rani, “Handwritten Gurmukhi Numeral Recognition using Different Feature Sets,” Int. J. Comput. Appl., vol. 28, no. 2, pp. 20–24, 2011.

24. H. Pujiharsono, H. A. Nugroho, and O. Wahyunggoro, “The Stand Meter Extraction of kWh-meter,” 2015 International Conference on Science in Information Technology (ICSITech). pp. 202–206, 2015.

25. R. Fisher, S. Perkins, A. Walker, and E. Wolfart, “Adaptive Thresholding,” Hypermedia Image Processing Reference (HIPR), 2003. [Online]. Available: homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm. [Accessed: 23-Mar-2015].

26. D. Putra, “Penskalaan,” in Pengolahan Citra Digital, Yogyakarta: Penerbit ANDI, 2010, pp. 159–162.

27. C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A Practical Guide to Support Vector Classification,” National Taiwan University. 2010.

28. J. C. Platt, “Fast Training of Support Vector Machines Using Sequential Minimal Optimization,” in Advances in Kernel Methods, 1998, pp. 41–65.

29. C.-W. Hsu and C.-J. Lin, “A Comparison of Methods for Multiclass Support Vector Machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2. pp. 415–425, 2002.