Synthesis of Si/SiO2 core/shell fluorescent submicron-spheres for monitoring the accumulation of colloidal silica during the growth of diatom Chaetoceros sp.

Main Article Content

Luu Manh Quynh
Hoang Van Huy
Nguyen Duy Thien
Le Thi Cam Van
Le Viet Dung

Abstract

Marine diatoms play a very crucial role in carbon export, and current food-web and become an important factor in global silica cycle. This then has made the mechanism of their biosilicification interesting to be a research subject. The classical theory states that the silica metabolism has been originated from the absorption of silicate ions, which might not give a suitable explanation for the solid silica silicification. In this study, mono-disperse Si/SiO2 fluorescent submicron-spheres were synthesized in aqueous solution, and applied in monitoring the extracellular solid silica accumulation of Chaetoceros sp. diatom. The Si/SiO2 submicron particles emitted light-blue color with the spectrum centered at 440 nm under the excitation of 365 nm UV light, similar to the typical excitation/emission pair of the DAPI fluorophore (excitation/emission: 358 nm/461 nm).  The fluorescence-microscopic investigation showed that the Si/SiO2 particles delocalized on the diatoms’ surface and increased a silicic-acid-level surrounding the microalgae. As a consequence, the growth rate of the diatoms increased as the concentration of the SiO2 particles was at 120 mg/L, and reached 1.5 times higher than the growth rate calculated from the F2 media. The study not only introduces a new aspect to the extracellular metabolism of microalgae biosilicification corresponding to the global silica cycle, but also presents a new-type of culturing media using SiO2 nanoparticles for diatom cultivation, which increases the growth rate of artificial diatom-culturing for further applications.

Downloads

Download data is not yet available.

Article Details

How to Cite
Quynh, L. M., Huy, H. V., Thien, N. D., Van, L. T. C., & Dung, L. V. (2022). Synthesis of Si/SiO2 core/shell fluorescent submicron-spheres for monitoring the accumulation of colloidal silica during the growth of diatom Chaetoceros sp. Communications in Science and Technology, 7(1), 1-7. https://doi.org/10.21924/cst.7.1.2022.661
Section
Articles

References

1. V. Smetacek., Diatoms and the ocean carbon cycle, Protist 150 (1999) 25-32.

2. B.P. Harvey, S. Agostini, K. Kon, S. Wada, J.M. Hall-Spencer, Diatom dominate and alter marine food-webs when CO2 rises, Diversity 11(12) (2019) 242.

3. K. Leblanc, V. Cornet, P.R. Maury, O. Grosso, S.H. Nunige, C. Brunet et al., Silicon cycle in the tropical South Pacific: contribution to the global Si cycle and evidence for an active pico-sized siliceous plankton, Biogeosciences 15 (2018) 5595-5620.

4. V.A. Chepornov, C.G. Steiguber, P. Siegel, Diatoms as hatchery feed: on-site cultivation and alternatives, Hatcheryfeed 6(3) (2018) 23-27.

5. S.M. Rahman., G.A. Lutzu, Alam A., Sarker P., M.A.K. Chowdhury, A. Parsaimehr et al., Microalgae in aquafeeds for a sustainable aquaculture industry, J. Appl. Phycol. 30(1) (2018) 197-213.

6. Z. Yi, M. Xu, X. Di, S. Brynjolfsson, and W. Fu, Exploring valuable lipids in diatoms, Front. Mar. Sci. 4 (2017) 17. doi: 10.3389/fmars.2017.00017.

7. K. Seth, A. Kumar, R.P. Rastogi, M.Meena., V. Vinayak., Harish, Bioprospecting of flucoxanthin form diatoms – Challenges and perspectives, Algal Res. 60 (2021) 102475.

8. M.J. Khan, A. Rai, A. Ahirwar, V. Sirotiya, M. Mourya, S. Mishra et al., Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations, Bioengineered 12(2) (2021) 9531-9549.

9. M. Terracciano., L.D. Stefano, I. Rea., Diatom green nanotechnology for biosilica-based drug delivery systems, Pharmaceutics 10(4) (2018) 242.

10. B. Delalat, V.C. Sheppard, S.R. Ghaemi, S. Rao, C.A. Prestidge, G. Mcphee et. al., Targeted drug delivery using genetically engineered diatom biosilica, Nat. Commun. 6 (2015) 8791.

11. A. Kami?ska, M. Sprynskyy, K. Winkler, T. Szymborski, Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma, Anal. Bioanal. Chem. 409 (2017) 6337-6347.

12. X. Kong, X. Chong, K. Squire., A.X. Wang, Microfluidic diatomite analytical devices for illicit drug sensing with ppb-level sensitivity, Sensors and Actuators B 259 (2018) 587-595.

13. K.K. Sharma, H. Schuhmann, P.M. Schenk, High lipid induction in microalgae for biodiesel production, Energy 5 (2012) 1532-1553.

14. U. Karsten, R. Schumann, S. Rothe, I. Jung, L. Medlin, Temperature and light requirement for growth of two diatom species (Bacillariophyceae) isolated from an Acrtic macroalga, Polar Biol. 29 (2006) 476-486.

15. T. Lebeau, J.M. Robert, Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various scales, Appl. Microbiol. Biotech. 60 (2003) 612-623.

16. L. Provasoli, A.D. Agostino, Development of artificial media for Artemia salina, Bio. Bull. 136 (1969) 434-453.

17. R.R.L. Guilard, J.H. Ryther, Studies of marine planktonic diatoms: I. Cyclotella nana hustedt, and Detonula confervacea (Cleve) gran, Can. J. MicroBiol., 8 (1962) 229-239.

18. D.C. Ohnemus, J.W. Krause, M.A. Brzezinski, J.L. Collier, S.B. Baines, B.S. Twining, The chemical form of silicon in marine Synechococcus, Mar. Chem. 206 (2018) 44-51.

19. R. Tostevin, J.T. Snow, Q. Zhang, N.J. Tosca, R.E.M. Rickaby, The influence of elevated SiO2 (aq) on intracellular silica uptake and microbial metabolism, Geobiology 19(4) (2021) 421-433.

20. M.A. Brezezinski, J.W. Krause, S.B. Baines, J.L. Collier, D.C. Ohnemus, B.S. Twinning, Patterns and regulation of silicon accumulation in Synechococcus Spp., J. Phycol. 53(4) (2017) 746-761.

21. S.B. Baines, B.S. Twinning, M.A. Brezezinski, J.W. Krause, S. Vogt, D. Assael et al., Significant silicon accumulation by marines picocyanobacteria, Nat. Geosci. 5 (2012) 886-891.

22. G.D. Okcu, E. Eustance, Y.S. Lai, B.E. Rittmann, Evaluation of co-culturing a diatom and a coccothophor using different silicate concentrations, Sci. Total Environ. 15 (2021) 145217.

23. T. Ikeda, Bacterial biosilicification: a new insight into the global silicon cycle, Biosci. Biotechnol. Biochem. 25 (2021) 1324-1331.

24. M. Hilderbrand, Silicic acid transport and its control during cell wall silicification in diatom, Weley-VCH German: Verlag GmbH & Co. KGaA, 2004.

25. H.S. Oh, S.E. Lee, C.S. Han, J. Kim, O. Nam, S. Seo et al., Silicon transporter genes of Fraggilariposis cylindrus (Bacillariophyceae) are differentially expressed during the progression of cell cycle synchronized by Si or light, Algae 33 (2018) 191-203.

26. Y. Ma, Y. Li, X. Zhong, Silica coating of luminescent quantum dots prepared in aqueous media for cellular labeling, Mat. Res. Bulletin 60 (2014) 543-551.

27. S.T. Selvan, Silica-coated quantum dots and magnetic nanoparticles for bioimaging applications (Mini-Review), Biointerphases 5(3) (2010) FA110-5.

28. S. Saita, H. Kawasaki, Origin of the fluorescence in silica-based nanoparticles synthesized from aminosilane coupling agent, J. Luminescence 232 (2021) 117849.

29. Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, Y. Su et al., Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes, J. Am. Chem. Soc. 135 (2013) 8350-8356.

30. J.H. Lim, S.W. Ha, J.K. Lee, Precise size control of silica nanoparticles via alkoxy exchange equilibrium of tetraethyl orthosilicate (TEOS) in the mixed alcohol solution, Bull. Korean Chem. Soc., 33 (2012) 1067-1070.

31. A.S. Afifah, I.W.K. Suryawan, A. Sarwono, Microalgae production using photo-bioreactor with intermittent aeration for municipal wastewater substrate and nutrient removal, Commun. Sci. Technol., 5(2) (2020) 107-111.

32. B.V. Oliinyk, D. Korytko, V. Lysenko, S. Alekseev, Are fluorescent silicon nanoparticles formed in a one-pot aqueous synthesis?, Chem. Mat. 31 (2019) 7167-7172.

33. K. Talreja, I. Chauhan, A. Ghosh, A. Majumdar, B.S. Butola, Functionalization of silica particles to tune the impact resistance of shear thickening fluid treated aramid fabric, RSC Adv. 7 (2017) 48787-49794.

34. V. Divya, B. Agrawal, A. Srivastav, P. Bhatt, S. Bhowmik, Y.K. Agrawal et al., Fluorescent amphiphilic silica nanopowder for developing latent fingerprints, Aus. J. Foren. Sci. 3 (2018) 354-367.

35. C. Wurth, M. Grabolle, J. Pauli, M. Spieles, Relative and absolute determination of fluorescence quantum yield of transparent samples, Nat. Protoc. 8 (2013) 1535-1550.

36. L.M.T. Phan, S. H. Baek, T.P. Nguyen, K.Y. Park, S. Ha, R. Rafique et al., Synthesis of fluorescent silicon quantum dots for ultra – rapid and seclective sensing of Cr(VI) ion and biomonitoring of cancer cells, Mater. Sci. Eng. C 93 (2018) 429-436.

37. T. Yonezawa, H. Tsukamoto, M. Matsubara, Low-temerature nanoredox two-step sintering of gelatin nanoskin-stabilized submicrometer-sized copper fine particles for preparing highly conductive layer, RSC. Adv. 5 (2015) 61290-61297.

38. P. Kuczynska, M.J. Rzeminska, K. Strzalka, Photosynthetic pigment in diatoms, Mar. Drug. 13 (2015) 5847-5881.

39. D.U.S. Ballardo, S. Rossi, V. Hernandez, R.V. Gomes, M.C.R. Unceta, J.C. Corrales et al., A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture, Aquac. 448 (2015) 87-92.

40. G.N. Hotos, D. Avramidu, V. Bekiari, Calibration curves of culture density assessed by spectrophotometer for three microalgae (Nephosemis sp., Amphidinium carterae and Phormidium sp.), European J. Biol. Biotech. 1(6) (2020) 1-7.

41. H. Tokushima, N.I. Kashino, Y. Nakazato, A. Masuda, K. Ifuku, Y. Kashino, Advantagous characteristics of the diatom Chaetoceros gracillis as a sustainable biofuel producer, Biotechnol. Biofuel. 9 (2016) 235.