EEG band power analysis corresponding to salivary amylase activity during stressful computer gameplay

Main Article Content

Alvin Sahroni
Faizal Mahananto
Hasballah Zakaria
Hendra Setiawan

Abstract

The cortisol and norepinephrine from human salivary can represent psychological conditions. A portable salivary amylase monitor device (sAA) has existed; however, how the sAA corresponds to the central nervous system changes is still limited to carry out. Twenty university students aged between 20 and 22 years participated in which they played a stressful computer game during the experiment. Nineteen EEG electrodes were attached to the head scalp while the relative power on the delta, theta, alpha, and beta-band was calculated. The sAA value was obtained using a portable device called Nipro Cocorometer from Japan. The sAA levels and the brain's relative band power increased. Beta waves of the brain's right hemisphere were found higher than that of the left hemisphere, especially on the right temporal (T4, p < 0.01). Then, we concluded that the beta-band power on the right hemisphere corresponds to wthe sAA changes.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sahroni, A., Mahananto, F., Zakaria, H., & Setiawan, H. (2022). EEG band power analysis corresponding to salivary amylase activity during stressful computer gameplay. Communications in Science and Technology, 7(1), 80-90. https://doi.org/10.21924/cst.7.1.2022.676
Section
Articles

References

1. I. Ketut, Environmental Influences Cause Stress on the Use of Computer. Int. j. publ. health sci., 1(1) (2012) 19–24.

2. R. A. Syakurah, V. Linardi, & I. Bonita, COVID-19 infodemic and Indonesian emotional and mental health state. Int. j. publ. health sci., 10(4) (2021) 927.

3. H. Selye, The Stress of life. Book V: Implications and applications. New York, Toronto, London, Mcgraw-Hill Book Co, 1956.

4. S. Noushad, S. Ahmed, B. Ansari, U.-H. Mustafa, Y. Saleem, & H. Hazrat, Physiological biomarkers of chronic stress: A systematic review. Int. J. Health Sci., 15 (5) (2021) 46–59.

5. N. Kausar et al., An assessment of the level of physiological stress in terms of release of cortisol, epinephrine, norepinephrine, prolactin and growth hormone and their relationship with ghrelin in normal and short stature children. www.endocrine-abstracts.org, Aug. 21, 2020. https://www.endocrine-abstracts.org/ea/0070/ea0070aep822 (accessed in Nov. 06, 2021).

6. G. Giacomello, A. Scholten, & M. K. Parr, Current methods for stress marker detection in saliva. J. Pharm. Biomed., 191 (2020) 113604.

7. J. Bienertova?Vasku, P. Lenart, & M. Scheringer, Eustress and Distress: Neither Good Nor Bad, but Rather the Same?. Bioessays, 42(7) (2020) 1900238.

8. A. J. Tanra, H. Madeali, M. Sanusi, S. Syamsuddin, & S. T. Lisal, Salivary Alpha-amylase Enzyme and Salivary Cortisol Level in Depression after Treatment with Fluoxetine. Open Access Maced. J. Med. Sci., 9(T3) (2021) 305–310.

9. H.-G. Kim, E.-J. Cheon, D.-S. Bai, Y. H. Lee, & B.-H. Koo, Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig., 15(3) (2018) 235–245.

10. T. Pereira, P. R. Almeida, J. P. S. Cunha, & A. Aguiar, Heart rate variability metrics for fine-grained stress level assessment. Comput. Methods. Programs. Biomed., 148 (2017) 71–80.

11. J. A. Seddon et al., Meta-analysis of the effectiveness of the Trier Social Stress Test in eliciting physiological stress responses in children and adolescents. Psychoneuroendocrinology, 116 (2020) 104582.

12. M. Yamaguchi, T. Kanemori, M. Kanemaru, N. Takai, Y. Mizuno, & H. Yoshida, Performance evaluation of salivary amylase activity monitor. Biosens. Bioelectron., 20(3) (2004) 491–497.

13. C. Kirschbaum, & D. H. Hellhammer, Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 19(4) (1994) 313–333.

14. C. Samson, & A. Koh, Stress Monitoring and Recent Advancements in Wearable Biosensors. Front. Bioeng. Biotechnol., 8 (2020).

15. M. Yamaguchi, M. Kanemaru, T. Kanemori, & Y. Mizuno, Flow-injection-type biosensor system for salivary amylase activity. Biosens. Bioelectron., 18(5–6) (2003) 835–840.

16. T. P. S. Miranda et al., Intercessory Prayer on Spiritual Distress, Spiritual Coping, Anxiety, Depression and Salivary Amylase in Breast Cancer Patients During Radiotherapy: Randomized Clinical Trial. J. Relig. Health, 59(1) (2019) 365–380.

17. B. S. McEwen et al., Mechanisms of stress in the brain. Nat. Neurosci., 18(10) (2015) 1353–1363.

18. F. Al-Shargie, M. Kiguchi, N. Badruddin, S. C. Dass, A. F. M. Hani, & T. B. Tang, Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomed. Opt. Express., 7(10) (2016) 3882–3898, Sep. 2016.

19. G. Giannakakis, D. Grigoriadis, K. Giannakaki, O. Simantiraki, A. Roniotis, & M. Tsiknakis, Review on psychological stress detection using biosignals. IEEE Trans. Affect. Comput., 13(1) (2019) 440-460.

20. A. Asif, M. Majid, & S.M. Anwar, Human stress classification using EEG signals in response to music tracks. Comput. Biol. Med., 107 (2019) 182-196.

21. E. Alyan, N. M Saad, N. Kamel, M.Z. Yusoff, M.A. Zakariya, M.A. Rahman, et al., Frontal Electroencephalogram Alpha Asymmetry during Mental Stress Related to Workplace Noise. Sensors, 21(6) (2021) 1968.

22. S. Hébert, R. Béland, O. Dionne-Fournelle, M. Crête, & S.J. Lupien, Physiological stress response to video-game playing: the contribution of built-in music. Life Sci., 76(20) (2005) 2371-2380.

23. P. Samal, & R. Singla, EEG Based Stress Level Detection during Gameplay. In 2021 IEEE 2nd Global Conference for Advancement in Technology (GCAT) (2021) pp. 1-4.

24. H. Aliyari et al., The Effects of Fifa 2015 Computer Games on Changes in Cognitive, Hormonal and Brain Waves Functions of Young Men Volunteers. Basic Clin. Neurosci., 6(3) (2015) 193–201.

25. A. Markovic, M. Kaess, & L. Tarokh, Gender differences in adolescent sleep neurophysiology: a high-density sleep EEG study. Sci. Rep., 10(1) (2020) 15935.

26. R. Patton, Obstructing the View: An Argument for the use of Obstructions in Art Education Pedagogy. The Journal of Social Theory in Art Education (30,” 2010. Accessed: Sep. 24, 2021. [Online]. Available: https://scholarscompass.vcu.edu/cgi/viewcontent.cgi?referer=https://scholar.google.com/&httpsredir=1&article=1366&context=jstae.

27. “Super Cat World: Syobon Action for PC Windows or MAC for Free,” TarskiTheme.com. https://tarskitheme.com/apps/com.catmario.hd/ (accessed Oct. 29, 2021).

28. S.W. Ibrahim, R. Djemal, A. Alsuwailem, & S. Gannouni, Electroencephalography (EEG)-based epileptic seizure prediction using entropy and K-nearest neighbor (KNN). Commun. Sci. Technol., 2(1) (2017) 6-10.

29. C.F. Hotama, H.A. Nugroho, I. Soesanti, & W.K. Oktoeberza, Interference effect during word-task and colour-task in incongruent stroop-task. Commun. Sci. Technol., 2(2) (2017) 47-52.

30. A. Dehghani, O. Sarbishei, T. Glatard, & E. Shihab, A quantitative comparison of overlapping and non-overlapping sliding windows for human activity recognition using inertial sensors. Sensors, 19(22) (2019) 5026.

31. D.M. Psatta, M. Olaru, & M. Matei, (2000) EEG Relative Power versus Absolute Power Mapping-Advantages, Disadvantages. Rom. J. Neurol., 38(1/2) (2000) 21-34.

32. F. Al-Shargie, T. B. Tang, & M. Kiguchi, Assessment of mental stress effects on prefrontal cortical activities using canonical correlation analysis: an fNIRS-EEG study. Biomed. Opt. Express, 8(5) (2017) 2583.

33. S. Hébert, R. Béland, O. Dionne-Fournelle, M. Crête, & S. J. Lupien, Physiological stress response to video-game playing: the contribution of built-in music. Life Sci., 76(20) (2020) 2371–2380.

34. T. B. Alakus, M. Gonen, & I. Turkoglu, Database for an emotion recognition system based on EEG signals and various computer games – GAMEEMO. Biomed. Signal. Process. Control, 60 (2020) 101951.

35. J. P. Henry, Psychological and physiological responses to stress: The right hemisphere and the hypothalamo-pituitary-adrenal axis, an inquiry into problems of human bonding. Integr. Psychol. Behav. Sci., 28(4) (1993) 369–387.

36. R. Katmah, F. Al-Shargie, U. Tariq, F. Babiloni, F. Al-Mughairbi, & H. Al-Nashash, A Review on Mental Stress Assessment Methods Using EEG Signals. Sensors, 21(15) (2021) 5043, Jul. 2021.

37. F. Chapotot, C. Gronfier, C. Jouny, A. Muzet, & G. Brandenberger, Cortisol Secretion Is Related to Electroencephalographic Alertness in Human Subjects during Daytime Wakefulness1. J. Clin. Endocr., 83(12) (1998) 4263–4268.

38. I. Palacios-García et al., Increase in Beta Power Reflects Attentional Top-Down Modulation After Psychosocial Stress Induction. Front. Hum. Neurosci., 15 (2021).