A comprehensive review on intelligent surveillance systems

Main Article Content

Sutrisno Warsono Ibrahim

Abstract

Intelligent surveillance system (ISS) has received growing attention due to the increasing demand on security and safety. ISS is able to automatically analyze image, video, audio or other type of surveillance data without or with limited human intervention. The recent developments in sensor devices, computer vision, and machine learning have an important role in enabling such intelligent system. This paper aims to provide general overview of intelligent surveillance system and discuss some possible sensor modalities and their fusion scenarios such as visible camera (CCTV), infrared camera, thermal camera and radar. This paper also discusses main processing steps in ISS: background-foreground segmentation, object detection and classification, tracking, and behavioral analysis.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ibrahim, S. W. (2016). A comprehensive review on intelligent surveillance systems. Communications in Science and Technology, 1(1). https://doi.org/10.21924/cst.1.1.2016.7
Section
Articles
Author Biography

Sutrisno Warsono Ibrahim, King Saud University

Sutrisno W. Ibrahim currently is a PhD student and research assistant at Electrical Engineering Dept., King Saud University, Saudi Arabia. He gained M.Sc from the same department on Feb 2013. He got his primary education until senior high school at his hometown, Sukoharjo district, Central Java, Indonesia. He received his B.Sc. in Electrical Engineering from Sepuluh Nopember Institute of Technology in 2010. His research interest includes artificial intelligent, computer vision, biomedical engineering, and energy harvesting.

References

1. N. Sulman, T. Sanocki, D. Goldgof and R. Kasturi, How effective is human video surveillance performance?, 19th International Conference on Pattern Recognition, Tampa, FL, 2008, pp.1-3R.
2. R.J. Radke, S. Andra, O. Al-Kofahi and B. Roysam, Image change detection algorithms: A systematic survey, IEEE Trans. Image Process. 14 (2005) 294–307.
3. M. Cristani, M. Farenzena, D. Bloisi and V. Murino, Background Subtraction for Automated Multisensor Surveillance: A Comprehensive Review, EURASIP Journal on Advances in Signal Processing 2010 (2010) 343057.
4. T. Bouwmans, F. El Baf, and B. Vachon, Statistical background modeling for foreground detection: A survey, Handbook of Pattern Recognition and Computer Vision (Volume 4). Singapore: World Scientific, 2010.
5. T. Bouwmans, Recent advanced statistical background modeling for foreground detection: A systematic survey, Recent Patents Comput. Sci. 4 (2011) 147–176.
6. S. Brutzer, B. Hoferlin, G. Heidemann, Evaluation of background subtraction techniques for video surveillance, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, USA, 2011, pp. 1937-1944.
7. A. Sobral, A.Vacavant, A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos, Computer Vision and Image Understanding 122 (2014) 4-21.
8. M. Paul, S. M. Haque and S. Chakraborty, Human detection in surveillance videos and its applications-a review, EURASIP Journal onar Advances in Signal Processing 2013(2013) 1-16.
9. M. Enzweiler and D. M. Gavrila, Monocular pedestrian detection: Survey and experiments, IEEE Trans. Pattern Analysis and Machine Intelligence 31 (2009) 2179-2195.
10. P. Dollar, C. Wojek, B. Schiele and P. Perona, Pedestrian Detection: An Evaluation of the State of the Art, IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (2012) 743-761.
11. A. Yilmaz and M. Shah, Object tracking: A survey, Journal ACM Computing Surveys 38 (2006) article 13 (45 pages).
12. A.W.M. Smeulders, Dung M. Chu, R.Cucchiara, S. Calderara, A. Dehghan and M. Shah, Visual Tracking: an Experimental Survey, IEEE Transaction on Pattern Analysis and Machine Intelligence 36 (2014) 1442-1468.
13. A. Bedagkar-Gala and Shishir K. Shah, A survey of approaches and trends in person re-identification, Image and Vision Computing 32 (2014) 270-286.
14. Y. Wu, J Lim and M Yang, Object Tracking Benchmark, IEEE Transactions on Pattern Analysis and Machine Intelligence 37 (2015) 1834-1848.
15. T. Ko, A survey on behavior analysis in video surveillance for homeland security applications, 37th IEEE Applied Imagery Pattern Recognition Workshop, Washington, DC, USA, 2008, pp.1-8.
16. M. Cristani, R. Raghavendra, A. Del Bue and V. Murino, Human behavior analysis in video surveillance: A Social Signal Processing perspective, Neurocomputing 100 (2013) 86-97.
17. D. Gowshikaa, S Abirami and R Baskaran, Automated Human Behaviour Analysis from Surveillance videos: A survey, Artificial Intelligence Review 42 (2014) 747-765.
18. R. Gade and T. B. Moeslund, Thermal cameras and applications: A survey, Machine Vision & Applications 25 (2014) 245-262.
19. A. Javed, A. Ejaz, S. Liaqat, A. Ashraf and M.B. Ihsan, Automatic target classifier for a Ground Surveillance Radar using linear discriminant analysis and Logistic regression, Radar Conference (EuRAD), 2012 9th European, Amsterdam, 2012, pp.302-305.
20. D. Kocur, P. Kazimir, J. Fortes, D. Novak, M. Drutarovsky, P. Galajda and R. Zetik, Short-range UWB radar: Surveillance robot equipment of the future, IEEE International Conference on Systems, Man and Cybernetics (SMC), San Diego, CA, USA, 2014, pp.3767-3772.
21. L. Spinello, K. O. Arras, R. Triebel and R. Siegwart, A layered approach to people detection in 3D range data, AAAI Conference on Artificial Intelligence (AAAI-10), Atlanta, Georgia, USA, 2010.
22. L. Spinello, M. Luber and K.O. Arras, Tracking people in 3D using a bottom-up top-down detector, 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, 2011, pp.1304-1310.
23. Csaba Benedek, 3D people surveillance on range data sequences of a rotating Lidar, Pattern Recognition Letters 50 (2014) 149-158.
24. Benny Ping Lai Lo, Jie Sun and Sergio A.Velastin, Fusing Visual and Audio Information in a Distributed Intelligent Surveillance System for Public Transport Systems, Acta Automatica Sinica, 29 (2003) 393-407.
25. D.L. Hall and J. Llinas, An introduction to multisensor data fusion, Proceedings of the IEEE 85 (1997) 6-23.
26. E. F. Nakamura, A. A. F. Laureiro and A. C. Frery, Information fusion for wireless sensor networks: Methods, models, and classifications, ACM Comput. Surveys 39 (2007) 1–55.
27. E.I. Gokce, A.K. Shrivastava, Jung Jin Cho and Yu Ding, Decision Fusion from Heterogeneous Sensors in Surveillance Sensor Systems, IEEE Transactions on Automation Science and Engineering 8 (2011) 228-233.
28. B. Khaleghi, Alaa Khamis, Fakhreddine O. Karray and Saiedeh N. Razavi, Multisensor data fusion: A review of the state-of-the-art, Information Fusion 14 (2013) 28-44.
29. X. Wang, Intelligent multi-camera video surveillance: A review, Pattern Recognition Letters, 34 (2013) 3-19.
30. Y.W. Bai, Li-Sih Shen and Zong-Han Li, Design and implementation of an embedded home surveillance system by use of multiple ultrasonic sensors, IEEE Transactions on Consumer Electronics, 56 (2010) 119-124.
31. Y.W. Bai, Z. l. Xie and Z. H. Li, Design and implementation of a home embedded surveillance system with ultra-low alert power, IEEE Transactions on Consumer Electronics, 57 (2011) 153-159.
32. J.L. Castro, M. Delgado, J. Medina and M.D. Ruiz-Lozano, Intelligent surveillance system with integration of heterogeneous information for intrusion detection, Expert Systems with Applications, 38 (2011) 11182-11192.
33. A. Prati, R. Cucchiara and R. Vezzani, A multi-camera vision system for fall detection and alarm generation, Expert Systems, 24(5) 334–345.
34. F. Porikli, Y. Ivanov and T. Haga, Robust abandoned object detection using dual foregrounds, EURASIP Journal on Advances in Signal Processing, (2008) article no. 30.
35. Y.L. Chen, Bing-Fei Wu, Hao-Yu Huang and Chung-Jui Fan, A Real-Time Vision System for Nighttime Vehicle Detection and Traffic Surveillance, IEEE Transactions on Industrial Electronics 58 (2014) 2030-2044.
36. J.C.S. J. Junior, S. R. Musse and C. R. Jung, Crowd analysis using computer vision techniques: A survey, IEEE Signal Processing Magazine 27 (2010) 66-77.
37. R. Collins, A. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto and O. Hasegawa, A system for video surveillance and monitoring, Tech. Rep. CMU-RI-TR- 00-12, Robotics Institute, Carnegie Mellon University (2000).
38. I. Haritaoglu, D. Harwood and L.S. Davis, W4: Real-time surveillance of people and their activities, Patter Analysis and Machine Intelligence, 22 (2000) 809–830.
39. S.A. Velastin, L. Khoudour, B.P.L Lo, J. Sun and M.A. Vicencio-Silva, PRISMATICA: a multi-sensor surveillance system for public transport networks, 12th IEE International Conference on Road Transport Information and Control, London, UK , 2004, pp.19-25.
40. N. T. Siebel and S. Maybank, The ADVISOR visual surveillance system, Proc. ECCV 2004 Workshop Applications of Computer Vision, Prague, Czech Republic, 2004, pp.103 -111.
41. B. Leininger, et al. Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS). Proc. SPIE 6981 (2008) 69810H.
42. V. Morellas, I. Pavlidis and P. Tsiamyrtzis, DETER: Detection of Events for Threat Evaluation and Recognition, Machine Vision and Applications, 15(2003) 29-46.
43. J. S. Kim, D. H. Yeom and Y. H. Joo, Fast and robust algorithm of tracking multiple moving objects for intelligent video surveillance systems, IEEE Transactions on Consumer Electronics 57 (2011) 1165-1170.
44. M. Valera and S. A. Velastin, Intelligent distributed surveillance systems: a review, IEEE Proceedings - Vision, Image and Signal Processing, vol. 152 (2005) 192-204.
45. P. Kumar, A. Mittal and P. Kumar, A Multimodal Audio, Visible and Infrared Surveillance System (MAVISS), 3rd IEEE International Conference on Intelligent Sensing and Information Processing (ICISIP), Bangalore, Karnataka, India, 2005, pp. 151-157.
46. Q. Cai and J.K. Aggarwal, Tracking human motion in structured environments using a distributed-camera system, IEEE Transactions on Pattern Analysis and Machine Intelligence 21 (1999) 1241-1247.
47. R.T. Collins, A.J. Lipton, H. Fujiyoshi and T. Kanade, Algorithms for cooperative multisensor surveillance, Proceedings of the IEEE 89 (2001) 1456-1477.
48. X. Wang, S. Wang and D. Bi, Distributed Visual-Target-Surveillance System in Wireless Sensor Networks, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39 (2009) 1134-1146.
49. N.M. Robertson and J. Letham, Contextual person detection in multi-modal outdoor surveillance, Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th European, Bucharest, Romania, 2012, pp.1930-1934.
50. C. Premebida, J. Carreira, J. Batista and U. Nunes, Pedestrian detection combining rgb and dense lidar data, International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 2014, pp. 4112-4117.
51. C. Stauffer and W. Grimson, Adaptive background mixture models for real-time tracking, CVPR 1999 (1999) 246-252.
52. A. Elgammal, D. Harwood and L.Davis, Non-parametric Model for Background Subtraction, ECCV, Dublin, Ireland, 2000, pp. 751-767.
53. K. Kim, T. Chalidabhongse, D. Harwood and L. Davis, Real-time Foreground-Background Segmentation using Codebook Model, Real- Time Imaging 11 (2005) 172-185.
54. B. Lee and M. Hedley, Background Estimation for Video Surveillance, Image and Vision Computing New Zealand (IVCNZ 2002), New Zealand, 2002, pp. 315-320.
55. N. McFarlane and C. Schofield, Segmentation and tracking of piglets in images, BMVA 1995 (1995) 187-193.
56. J. Zheng, Y. Wang, N. Nihan and E. Hallenbeck, Extracting Roadway Background Image: A mode based approach, Journal of Transportation Research Report 1944 (2006) 82-88.
57. C. Wren, A. Azarbayejani, T. Darrell and A. Pentland, Pfinder: Real-Time Tracking of the Human Body, IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1997) 780-785.
58. A. Elgammal, R. Duraiswami, D. Harwood and L. S. Davis, Background and foreground modeling using nonparametric kernel density estimation for visual surveillance, Proceedings of the IEEE 90 (2002) 1151-1163.
59. M. Sigari,N. Mozayani and H. Pourreza, Fuzzy Running Average and Fuzzy Background Subtraction: Concepts and Application, International Journal of Computer Science and Network Security 8 (2008) 138-143.
60. F. El Baf, T. Bouwmans and B. Vachon, Type-2 fuzzy mixture of Gaussians model: Application to background modeling, ISVC 2008, Las Vegas, USA, 2008, pp. 772-781.
61. D. Butler and S. Sridharan, Real-Time Adaptive Background Segmentation, International Conference on Multimedia and Expo, Baltimore, Maryland, 2003, pp. III-341-4.
62. D. Culbrik, O. Marques, D. Socek, H. Kalva and B. Furht, Neural network approach to background modeling for video object segmentation, IEEE Transaction on Neural Networks 18 (2007) 1614–1627.
63. L. Maddalena and A. Petrosino, A self-organizing approach to background subtraction for visual surveillance applications, IEEE Transactions on Image Processing 17 (2008) 1729–1736.
64. S. Biswas, J. Sil and N. Sengupta, Background Modeling and Implementation using Discrete Wavelet Transform: a Review, JICGST-GVIP 11 (2011) 29-42.
65. K. Toyama, J. Krumm, B. Brumitt and B. Meyers, Wallflower: Principles and Practice of Background Maintenance, International Conference on Computer Vision, Corfu, Greece, 1999, pp. 255-261.
66. S. Messelodi, C. Modena, N. Segata and M. Zanin, A Kalman filter based background updating algorithm robust to sharp illumination changes, ICIAP 2005, Cagliari, Italy, 2005, pp. 163-170.
67. R. Chang, T. Ghandi and M. Trivedi, Vision modules for a multi sensory bridge monitoring approach, The 7th International IEEE Conference on, Intelligent Transportation Systems, Washington, WA, USA, 2004, pp. 971-976.
68. A. Vacavant, T. Chateau, A. Wilhelm and L. Lequièvre, A benchmark dataset for foreground/background extraction, Background Models Challenge (BMC) at Asian Conference on Computer Vision (ACCV), Daejeon, Korea, 2012, pp. 291–300.
69. P. Kaewtrakulpong and R. Bowden, An Improved Adaptive Background Mixture Model for Realtime Tracking with Shadow Detection, Video Based Surveillance Systems: Computer Vision and Distributed Processing, US: Springer US, 2001.
70. J. Yao and J. marc Odobez, Multi-layer background subtraction based on color and texture, IEEE Computer Vision and Pattern Recognition Conference (CVPR), Minneapolis, MN, USA, 2007, pp. 1 - 8.
71. M. Hofmann, P. Tiefenbacher and G. Rigoll, Background segmentation with feedback: The pixel-based adaptive segmenter, IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Providence, RI, USA, 2012, pp. 38–43.
72. N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, IEEE Int’l Conf. Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005, pp. 886-893.
73. P. Viola, M. Jones and D. Snow, Detecting Pedestrians Using Patterns of Motion and Appearance, Int’l J. Computer Vision, 63 (2005) 153-161.
74. P. Dollar, S. Belongie and P. Perona, The Fastest Pedestrian Detector in the West, Proc. British Machine Vision Conf., 2010, pp. 68.1-68.11.
75. S. Walk, N. Majer, K. Schindler and B. Schiele, New Features and Insights for Pedestrian Detection, IEEE Conf. Computer Vision and Pattern Recognition, San Francisco, CA , USA, 2010, 1030 - 1037.
76. A. Cavallaro, O. Steiger and T. Ebrahimi, Tracking video objects in cluttered background, IEEE Transactions on Circuits and Systems for Video Technology 15 (2005) 575-584.
77. M. Danelljan, G. Hager, F.S. Khan and M. Felsberg, Accurate scale estimation for robust visual tracking, Proceedings of the British Machine Vision Conference BMVC, Nottingham, UK, 2014, pp - .
78. D.S. Bolme, J.R. Beveridge, B.A. Draper and Y.M. Lui, Visual object tracking using adaptive correlation filters, Comp. Vis. Patt. Recognition (2010), San Francisco, CA, USA, 2010, pp. 2544- 2550.
79. D. Mitzel and B. Leibe, Real-time multi-person tracking with detector assisted structure propagation, Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, Barcelona, 2011, pp. 974-981.
80. W. Li, Z. Zhang and Z. Liu, Action recognition based on a bag of 3D points, IEEE computer society conference on computer vision and pattern recognition workshops, San Francisco, CA, USA, 2010, pp. 9–14.
81. C. Rougier, J. Meunier, A. St-Arnaud and J. Rousseau, Robust video surveillance for fall detection based on human shape deformation, IEEE Trans Circuits Syst Video Technol 21(2011) 611–622.
82. W. Lin, M.T. Sun, R. Poovendran and Z. Zhang, Group event detection with a varying number of group members for video surveillance. IEEE Trans Circuits Syst Video Technol 20(8):1057–1067, 2010.
83. B. Solmaz Brian E. Moore and Mubarak Shah, Identifying Behaviours in Crowd Scenes Using Stability Analysis for Dynamical Systems, IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (2012) 2064-2070.
84. H. Idrees, Nolan Warner and Mubarak Shah, Tracking in dense crowds using prominence and neighborhood motion concurrence, Image and Vision Computing 32 (2014) 14-26.
85. N. Kiryati, T.R. Riklin, Y. Ivanchenko and S. Rochel, Real-time abnormal motion detection in surveillance video, IEEE 19th International Conference on Pattern Recognition, Tampa, Florida, USA, 2008, pp. 1–4.
86. H. Foroughi, H.S. Yazdi, H. Pourreza and M. Javidi, An eigenspace-based approach for human fall detection using integrated time motion image and multi-class support vector machine, IEEE 4th international conference on intelligent computer communication and processing, Cluj-Napoca, 2008, pp. 83–90.
87. S. Park and J.K. Aggarwal, Semantic-level understanding of human actions and interactions using event hierarchy, IEEE computer society conference on computer vision and pattern recognition workshops, Washington, DC, USA ,2004, pp 12.
88. F. Bremond, M. Thonnat and M. Zuniga, Video understanding framework for automatic behavior recognition, Behav Res Methods 38(2005) 416–426.