A review of measurement of electromagnetic emission in electronic product: Techniques and challenges

Main Article Content

Tito Yuwono
Mohd Hafiz Baharuddin
Norbahiah Misran
Mahamod Ismail
Mohd Fais Mansor

Abstract

Nowadays, electronic products are being used extensively in many fields and applications. The dense population of electronic devices in human life has become a challenge for microwave engineers to ensure that their products can meet the Electromagnetic Compatibility (EMC) standards. Complex electronic products with smaller sizes and denser components will be a challenge for compliance with EMC standards. In addition, the occurrence of non-stationary emission at certain operating modes becomes a challenge for analysis. Error in analyzing EM emissions will make the products unable to meet the requirements of EMC standards; hence, they will be prohibited to be marketed. Currently, there are two methods of emission analysis, i.e. by measurement and modeling or computation. There are some problems, however, in the analysis of EM emissions regarding the area of test, complexity, DUT positioning error, installation cost, and time consumption. In this paper, the analysis techniques for EM emissions including Open Area Test Site (OATS), Anechoic chamber, Transverse Electromagnetics TEM Cell, Compact Antenna Test Range (CATR) and near field scanning are reviewed comprehensively. This survey covered EMC standards, principles of EM emission measurement techniques, advantages and disadvantages of EM emission measurement techniques, studies and applications of each technique, recommendations for which technique to be used, and challenges for future research in EM emission measurement. The final section of this paper discusses the challenges for near-field measurements related to the non-stationary emissions phenomenon. This papers also presents the challenges of how to detect and characterize them.

Downloads

Download data is not yet available.

Article Details

How to Cite
Yuwono, T., Baharuddin, M. H., Misran, N., Ismail, M., & Mansor, M. F. (2022). A review of measurement of electromagnetic emission in electronic product: Techniques and challenges. Communications in Science and Technology, 7(1), 23-37. https://doi.org/10.21924/cst.7.1.2022.727
Section
Articles

References

1. A. K. Mallick, Electromagnetic Pollution and Its Management, Handbook of Green Engineering Technologies for Sustainable Smart Cities, CRC Press, 2021.

2. N. D. Mehta, M. Haque, A, and A. P. Patel, An Overview of an Esoteric Pollution EMI-EMC, IRE J. 2(2019) 69–76.

3. N. V Kantartzis and T. D. Tsiboukis, Modern EMC Analysis Techniques, Morgan & Claypool Publishers, 2008.

4. S. Ibrahim, A comprehensive review on intelligent surveillance systems, Commun. Sci. Technol. 1(2016) 7–14.

5. K. Wiklundh and P. Stenumgaard, EMC challenges for the era of massive Internet of Things, IEEE Electromagn. Compat. Mag. 8(2019) 65–74.

6. A. Maddocks, Electromagnetic Compatibility, UK: Elsevier, 2003.

7. K. Wyatt and R. Jost, EMC Pocket Guide. Scitech, 2013.

8. M. I. Montrose, EMC & The Printed Circuit Board. IEEE Press, 1998.

9. D. Morgan, A Handbook of EMC Testing and Measurement. London: The Institution of Engineering and Technology, 1994.

10. Paul and Clayton R, Introduction to Electromagnetic Compatibility. John Wiley & Sons, Inc, 2006.

11. CISRP, Information technology equipment - Radio disturbance characteristics - Limit and methods of measurement. Belgium, 2006.

12. E. Alan, C. C. Keskin, G. Kiraz, U. S. Ceran, and U. Dogan, Experimental Analysis of Radiated Emission Limits Regarding Test Facilities According to EN 55032, 2019 Fifth International Electromagnetic Compatibility Conference (EMC Turkiye), Kocaeli, Turkey, 2019, pp. 1–5.

13. C. . Balanis, Antenna Theory. John Wiley & Sons, Inc, 2005.

14. S. Eser and L. Sevgi, Open-Area Test Site (OATS) Calibration, IEEE Antennas Propag. Mag. 52(2010) 204–212.

15. P. Mathur and S. Raman, Electromagnetic Interference (EMI): Measurement and Reduction Techniques, J. Electron. Mater. 49(2020) 2975–2998.

16. P. F. Wilson, Advances in radiated EMC measurement techniques, URSI Radio Sci. Bull., 2004(2004) 65–78.

17. C. Zombolas, The effects of table material on radiated field strength measurement reproducibility at open area test sites, IEEE International Symposium on Electromagnetic Compatibility, 2001, pp. 260–264.

18. P. A. Beeckman, The influence of positioning tables on the results of radiated EMC measurements, IEEE Int. Symp. Electromagn. Compat., 2001, pp. 280–285.

19. I. Barbary et al., On the quality of a real open area test site, IEEE Int. Symp. Electromagn. Compat., 2015, pp. 1201–1206.

20. F. G. Awan and A. Kiran, Cancellation of Interference for Emission Measurement in Open Area Test Site, Measurement. 111(2017) 183–196.

21. K. M. G. Santos, M. S. Novo, G. Fontgalland, M. B. Perotoni, and C. L. Andrade, Shielding effectiveness measurements of coaxial cable and connectors using compact open area test site, J. Microwaves, Optoelectron. Electromagn. Appl. 16 (2017) 997–1011.

22. S. F. Romero, P. L. Rodriguez, D. E. Bocanegra, D. P. Martinez, and M. A. Cancela, Comparing Open Area Test Site and Resonant Chamber for Unmanned Aerial Vehicle’s High-Intensity Radiated Field Testing, IEEE Trans. Electromagn. Compat. 60(2018) 1704–1711.

23. H. Garbe, How to Reproducibly Measure the Unintended EMEmission from Handheld Devices, 5th International Conference on Consumer Electronics Berlin (ICCE-Berlin), 2015, pp. 211–212.

24. M. Hoijer and M. Backstrom, How we confused the comparison between high level radiated susceptibility measurements in the reverberation chamber and at the open area test site, 2003 IEEE International Symposium on Electromagnetic Compatibility, 2003, pp. 1043–1046.

25. Desheng Zhu and Keng Yin Chok, Modeling and correlation of radiated emissions generated in a fully anechoic chamber and at an OATS, 1998 IEEE EMC Symposium. International Symposium on Electromagnetic Compatibility, 1998, pp. 147–152.

26. D. Qiao, Z. Qi, H. Mingliang, and S. Dong-An, Analysis of scattering property of open-area test site ground plane, General Assembly and Scientific Symposium, 2014, pp. 4–7.

27. J. R. Regué, M. Ribó, and J. M. Garrell, Radiated emissions conversion from anechoic environment to OATS using a hybrid genetic algorithm - Gradient method, IEEE International Symposium on Electromagnetic Compatibility, 2001, pp. 325–329.

28. J. Park, G. Mun, D. Yu, B. Lee, and W. N. Kim, Proposal of simple Reference Antenna Method for EMI antenna calibration, IEEE International Symposium on Electromagnetic Compatibility, 2011, pp. 90–95.

29. D. Meng, Verification of ultra-broadband calculable dipole antennas & applications, 12th International Conference on Electronic Measurement and Instruments, 2015, pp. 1490–1493.

30. F. G. Awan, N. M. Sheikh, S. A. Qureshi, and A. Ali, A generic model for the classification of Radiation emission data in electromagnetic compatibility measurement, 2008 IEEE Radio and Wireless Symposium, 2008, pp. 315–318.

31. E. R. Heise and R. E. W. Heise, A method to compute open area test site uncertainty using ANSI C63.4 normalized site attenuation measurement data, Proceedings of Symposium on Electromagnetic Compatibility, 1996, pp. 505–507.

32. Chun Hsiung Chen and Han-Chang Hsieh, A GTD model for open area test site with finite metallic plane, IEEE International Symposium on Electromagnetic Compatibility, 2003, pp. 119-122.

33. L. H. Hemming, Electromagnetic Anechoic Chambers. Canada: IEEE Press, 2010.

34. Q. Xu and Y. Huang, Anechoic and Reverberation Chambers. Hoboken, NJ: John Wiley & Sons Ltd, 2019.

35. C. L. Holloway and E. F. Kuester, Modeling semi-anechoic electromagnetic measurement chambers, IEEE Trans. Electromagn. Compat. 38 (1996) 79–84.

36. E. F. Kuester, A Low-Frequency Model for Wedge or Pyramid Absorber Arrays—II: Computed and Measured Results, IEEE Trans. Electromagn. Compat. 36 (1994) 307–313.

37. T. Ellam, Update on the design and synthesis of compact absorber for EMC chamber applications, IEEE Int. Symp. Electromagn. Compat., 1994, pp. 408–412.

38. H. Komori and Y. K. Fellow, Wide Band Electromagnetic Wave Absorber with Thin Magnetic Layers, IEEE Trans. Broadcast. 40 (1994) 219–222.

39. C. L. Holloway, P. M. McKenna, R. A. Dalke, R. A. Perala, and C. L. Devor, Time-domain modeling, characterization, and measurements of anechoic and semi-anechoic electromagnetic test chambers, IEEE Trans. Electromagn. Compat. 44 (2002) 102–118.

40. F. L. Teixeira, On aspects of the physical realizability of perfectly matched absorbers for electromagnetic waves, Radio Sci. 38 (2003) 1–10.

41. L. R. Arnaut, Adaptive control and optimization of electromagnetic radiation, attenuation, and scattering using self-adaptive material systems, IEEE Trans. Antennas Propag. 51 (2003) 1530–1548.

42. S. Khadka, Evaluation of Radio Anechoic Chamber, M.Sc Thesis, Helsinki Metropolia University of Applied Sciences, 2017.

43. S. Takeya and K. Shimada, New measurement method of RF absorber characteristics by large square coaxial line, International Symposium on Electromagnetic Compatibility, 1993, pp. 397–402.

44. S. Tofani, A. Ondrejka, and M. Kanda, A time-domain method for characterizing the reflection coefficient of absorbing materials from 30 to 1000 MHz, IEEE Trans. Electromagn. Compat. 33 (1991), 234–240.

45. B. Fourestié, Z. Altman, and M. Kanda, Anechoic chamber evaluation using the matrix pencil method, IEEE Trans. Electromagn. Compat. 41 (1999) 169–174.

46. Z. Chen and Z. Xiong, Site contributions for radiated emission measurement uncertainties above 1 GHz, 2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), 2017, pp. 504–509.

47. L.-A. Dina, P.-M. Nicolae, I. D. Smarandescu, and V. Voicu, Considerations on radiated emission measurements for a Laptop in a semi-anechoic chamber, 2017 International Conference on Electromechanical and Power Systems (SIELMEN), 2017, pp. 202–207.

48. W. Hofmann, C. Bornkessel, and M. A. Hein, Influence of Electrically Large Structures on the EMC-Compliance of a Semi-Anechoic Chamber, 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), 2018, pp. 1–4.

49. Q. Zhang, T. H. Loh, W. Zhang, Y. Yang, Z. Huang, and F. Qin, A Low-Cost and Efficient Single Probe Based MIMO OTA Measurement Method, IEEE Trans. Instrum. Meas. 71(2022) 1–15.

50. A. M. Hakimi, A. Keivaan, H. Oraizi, and A. Amini, Wide-Scanning Circularly Polarized Reflector-Based Modulated Metasurface Antenna Enabled by a Broadband Polarizer, IEEE Trans. Antennas Propag. 70(2022) 84–96.

51. P. Liu, G. F. Pedersen, and S. Zhang, Wideband Low-Sidelobe Slot Array Antenna With Compact Tapering Feeding Network for E-Band Wireless Communications, IEEE Trans. Antennas Propag. 70(2022) 2676–2685.

52. R. H. Kenney, J. L. Salazar-Cerreno, and J. W. McDaniel, Two-Dimensional Beam Pattern Synthesis for Phased Arrays With Arbitrary Element Geometry via Magnitude Least Squares Optimization, IEEE J. Microwaves. 2(2022) 337–346.

53. Z. Tang, F. Yu, W. Rao, S. Lv, Y. Cui, and W. Wang, Electromagnetic Field Tests in the Anechoic Chamber Based on the Shared Tower Scale Model, 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA), 2022, pp. 150–153.

54. S. Youn, D. Jang, N. K. Kong, and H. Choo, Design of a Printed 5G Monopole Antenna With Periodic Patch Director on the Laminated Window Glass, IEEE Antennas Wirel. Propag. Lett. 21(2022) 297–301.

55. Manisha and N. Sood, Validation of anechoic chamber for radiated emission test, 15th Int. Conf. Electromagn. Interf. Compat., 2018, pp. 1–4.

56. V. S. Reddy and P. Kralicek, Modeling of semi-anechoic chamber for use in automotive EMC simulations, IEEE MTT-S Int. Microw. RF Conf., 2015, pp. 77–80.

57. H. Shida et al., Influence of test table materials on radiated immunity test: Report on investigation using a giant anechoic chamber, Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), 2018, pp. 572–577.

58. A. M. Silaghi, C. Balan, E. Tolan, and A. De Sabata, The influence of measurement setups in radiated emissions testing, 2017 14th Int. Conf. Eng. Mod. Electr. Syst., 2017, pp. 220–223.

59. R. Johnson and R. Ponsett, Compact Antenna Test Range Techiques, Technical Report, Griffiss Air Force Base, New York, 1966.

60. D. Fasold, Measurement Performance of Basic Compact Range Concepts, AMTA Europe Symposium, 2006, pp. 1–11.

61. C. S. Obiekezie, Extended Equivalent Dipole Model for Radiated Emissions, Ph.D Thesis, University of Nottingham, UK, 2016.

62. J. McCormick, J. Boyce, J. Sayers, and J. Murray, The impact on measurement accuracy of specifying a compact antenna test range for high power testing, IET Semin. Dig., 2007, pp. 1–6.

63. M. Juretzko and E. Richter, Compact Range Calibration and Alignment, AMTA Europe Symposium, 2006, pp. 270–275.

64. C. . Balanis, Antenna Theory Analysis and Design, Canda:John Wiley & Sons, Inc, 2015.

65. V. Viikari, J. Häkli, J. Ala-Laurinaho, J. Mallat, and A. V. Räisänen, A feed scanning based APC technique for compact antenna test ranges, IEEE Trans. Antennas Propag. 53(2005) 3160–3165.

66. S. Blalock and J. A. Fordham, Antenna measurement uncertainty method for measurements in compact antenna test ranges, 2016 10th European Conference on Antennas and Propagation (EuCAP), 2016, pp. 1–5.

67. A. F. Vaquero, M. Arrebola, M. R. Pino, R. Florencio, and J. A. Encinar, Demonstration of a Reflectarray with Near-field Amplitude and Phase Constraints as Compact Antenna Test Range Probe for 5G New Radio Devices, IEEE Trans. Antennas Propag. 69(2021) 2715-2726.

68. M. Nel, J. Joubert, and J. W. Odendaal, The measurement of complex antenna transfer functions for ultra-wideband antennas in a compact range [measurements corner], IEEE Antennas and Propagation Magazine. 56 (2014) 163–170.

69. B. Svensson et al., A new compact antenna test range for EW-antenna system production testing, 2017 11th European Conference on Antennas and Propagation, 2017, pp. 2585–2589.

70. J. Häkli et al., Testing of a 1.5-m reflector antenna at 322 GHz in a CATR based on a hologram, IEEE Trans. Antennas Propag. 53 (2005) 3142–3150.

71. J. Ala-Laurinaho et al., Measurement of the Odin telescope at 119 GHz with a hologram-type CATR, IEEE Trans. Antennas Propag. 49(2001) 1264–1270.

72. A. Karttunen et al., Antenna tests with a hologram-based CATR at 650 GHz, IEEE Trans. Antennas Propag. 57(2009) 711–720.

73. Y. Chen, L. Zhu, Y. Yao, H. Ge, J. Yu, and X. Chen, Unified Initial Preprocessing for Phaseless Characterization of Quiet Zone in Millimeter-wave Compact Antenna Test Range, IEEE Antennas Wirel. Propag. Lett. 1225(2022) 1–5.

74. J. Tang et al., Compact Antenna Test Range Using Very Small F/D Transmitarray Based on Amplitude Modification and Phase Modulation, IEEE Trans. Instrum. Meas. 71(2022) 1-14.

75. S. F. Gregson, M. Dirix, and R. Dubrovka, Efficient Optimization of the Blended Rolled Edge of a Rectangular Single Offset-Fed Compact Antenna Test Range Reflector Using Genetic Evolution, 2022 16th European Conference on Antennas and Propagation (EuCAP), 2022, pp. 1–5.

76. S. Pivnenko, A. U. Zaman, and M. Ivashina, Using a Conical Horn as Compact Antenna Test Range Feed in Millimetre Bands, 2022 16th European Conference on Antennas and Propagation (EuCAP), 2022, pp. 01–05.

77. M. Kanda and R. D. Orr, Generation of Standard Electromagnetic Field in a TEM Cell, Technical Note, US National Bureau of Standards, Washington, 1988.

78. S. Wen, J. Zhang, and Y. Lv, The optimization design of septum in TEM cells for IC EMC Measurement, 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), 2015, pp. 250–253.

79. Y. Li, J. Wu, H. Li, H. Zhang, H. Ma, and J. Wu, Comparison test and error analysis of the TEM cell method in IC radiated emission, 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), 2018, pp. 1208–1211.

80. H. M. Pathak, S. Shah, and H. O. Mode, Development and test analysis of Symmetric Open TEM cell, J. Sci. Technol. Res. 2(2020) 90–97.

81. A. Eadie, TEM Cell and GTEM Guide For Radiated Emissions & Radiated Immunity Pre-Compliance Testing, 2019. https://emcfastpass.com/tem-cell-guide.

82. IEC, IEC 61967-2?: 2005 Integrated circuits - Measurement of electromagnetic. 2005.

83. M. Koohestani, M. Ramdani, and R. Perdriau, Impact of Mode Propagation on Radiated Immunity Characterization in Commonly Used TEM Cells, EMC COMPO 2019 - 2019 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits, 2019, pp. 5–7.

84. M. Koohestani, M. Ramdani, F. L. Lafon, A. A. Moreira, and R. Perdriau, Impact of Field Polarization on Radiated Emission Characterization in an Open TEM Cell, IEEE Trans. Instrum. Meas. 69(2020) 6595–6602.

85. L. Wen, G. Yalin, and L. Jin, Three new strip-line TEM cells in EMC test, 2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT), 2016, pp. 497–500.

86. C. Shi, C. Chai, Y. Yang, Z. Ma, L. Qiao, and X. Yu, Characterization of electromagnetic field-transmission line coupling of radiated emission and immunity using TEM cell measurement, Prog. Electromagn. Res. Lett. 64(2016) 65-71.

87. A. V. Demakov and M. E. Komnatnov, Improved TEM-cell for EMC tests of integrated circuits, 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), 2017, pp. 399–402.

88. N. Narang, S. K. Dubey, P. S. Negi, and V. N. Ojha, Precise E-field measurement inside TEM cell at GSM frequencies using microstrip E-field probe, 2016 International Conference on Signal Processing and Communication (ICSC), 2016, pp. 126–129.

89. W. Fang et al., Extracting the Electromagnetic Radiated Emission Source of an Integrated Circuit by Rotating the Test Board in a TEM Cell Measurement, IEEE Trans. Electromagn. Compat. 61(2019) 833–841.

90. M. Stojanovic, F. Lafon, S. Op’T Land, R. Perdriau, and M. Ramdani, Determination of Equivalent Coupling Surface of Passive Components Using the TEM Cell, IEEE Trans. Electromagn. Compat. 60(2018) 298–309.

91. H. Jang, J. Lim, Y. Lee, H. Lee, and W. Nah, Electric and magnetic field shielding evaluation of board level shield can using TEM cell, in 2015 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 2015, pp. 201–204.

92. Y. Bacher et al., A new RLC structure measurement method using a Transverse ElectroMagnetic cell, 2015 IEEE International Circuits and Systems Symposium (ICSyS), 2015, pp. 7–10.

93. H. Sinaga and B. H. Sitorus, Design of tem cell to test the electromagnetic sensor, ARPN J. Eng. Appl. Sci. 12(2017) 3783–3788.

94. C. Shi et al., Using Termination Effect to Characterize Electric and Magnetic Field Coupling Between TEM Cell and Microstrip Line, IEEE Trans. Electromagn. Compat. 57(2015) 1338–1344.

95. K. L. Chua and M. Z. Mohamed Jenu, Improved accuracy of GTEM cell/SAC-correlated measurement of IC-radiated electric fields by a correction factor, ARPN J. Eng. Appl. Sci. 10(2015) 8441–8444.

96. A. Raizer and M. P. Fonseca, Using a GTEM cell in an interlaboratory comparison of radiated emission, 2017 IEEE 3rd Glob. Electromagn. Compat. Conf, 2017, pp. 1–4.

97. A. Vie, B. Loader, and D. Bownds, Investigation of the performance of the GTEM 1750 from 0.08 GHz to 6 GHz, IEEE Int. Symp. Electromagn. Compat., 2016, pp.245–250.

98. B. Palczynska, Radiated emissions measurements of a portable power bank in a GTEM cell, 17th IEEE Int. Conf. Environ. Electr. Eng., 2017, pp. 0–5.

99. P. Elter, A. Sabo, T. Szakáll, and B. Kulji?, EMC Measurement with GTEM Cell, J. Appl. Tech. Educ. Sci. 9(2019) 112–128.

100. J.-I. Hong and C.-S. Huh, Optiimization of strirrer with arious parameters in reverberation chamber, Prog. Electromagn. Res. 104(2010) 15–30.

101. A. Kundu, B. Gupta, K. Patra, and A. I. Mallick, Role of Reverberation Chamber in Wireless Testing and Measurement with Emphasis on Investigating Biological Effects, 2020 IEEE Calcutta Conference (CALCON), 2020, pp. 132–136.

102. D. Mandaris et al., Different Test Site Analysis of Radiated Field Measurements of a Complex EUT, 2019 International Symposium on Electromagnetic Compatibility - EMC EUROPE, 2019, pp. 674–679.

103. C. L. Holloway, H. A. Shah, R. J. Pirkl, W. F. Young, D. A. Hill, and J. Ladbury, Reverberation chamber techniques for determining the radiation and total efficiency of antennas, IEEE Trans. Antennas Propag. 60(2012), 1758–1770.

104. C. Orlenius, P.-S. Kildal, and G. Poilasne, Measurements of total isotropic sensitivity and average fading sensitivity of CDMA phones in reverberation chamber, 2005 IEEE Antennas and Propagation Society International Symposium, 2005, pp. 409–412.

105. X. Chen, P. S. Kildal, and M. Gustafsson, Characterization of implemented algorithm for MIMO Spatial multiplexing in reverberation chamber, IEEE Trans. Antennas Propag. 61(2013) 4400–4404.

106. X. Chen, On statistics of the measured antenna efficiency in a reverberation chamber, IEEE Trans. Antennas Propag. 61(2013) 5417–5424.

107. X. Chen, Experimental Investigation of the Number of Independent Samples and the Measurement Uncertainty in a Reverberation Chamber, IEEE Trans. Electromagn. Compat. 55(2013) 816–824.

108. C. Choeysakul, F. Schlagenhaufer, P. Rattanakreep, and P. Hall, EMC applications for military: Reverberation chamber tests, The 20th Asia-Pacific Conference on Communication (APCC2014), 2014, pp. 434–437.

109. J. Clegg, A. C. Marvin, J. F. Dawson, and S. J. Porter, Optimization of stirrer designs in a reverberation chamber, IEEE Trans. Electromagn. Compat. 47(2005) 824–832.

110. O. Delangre, S. Van Roy, P. De Doncker, M. Lienard, and P. Degauque, Modeling in-Vehicle Wideband Wireless Channels Using Reverberation Chamber Theory, 2007 IEEE 66th Vehicular Technology Conference, 2007, pp. 2149–2153.

111. F. Diouf, F. Paladian, M. Fogli, C. Chauvière, and P. Bonnet, Emission in reverberation chamber: Numerical evaluation of the total power radiated by a wire with a stochastic collocation method, Proceedings of the 18th International Zurich Symposium on Electromagnetic Compatibility, 2007, pp. 99–102.

112. K. Harima and Y. Yamanaka, FDTD analysis on the effect of stirrers in a reverberation chamber, 1999 International Symposium on Electromagnetic Compatibility, 1999, pp. 260–263.

113. L. O. Fichte, K. Grutzat, and M. Stiemer, On the use of electromagnetic reverberation chambers for expositure tests of cell tissue, 2012 6th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), 2012, pp. 329–332.

114. H. Fielitz, K. A. Remley, C. L. Holloway, Q. Zhang, Q. Wu, and D. W. Matolak, Reverberation-chamber test environment for outdoor urban wireless propagation studies, IEEE Antennas Wirel. Propag. Lett. 9(2010) 52–56.

115. M. A. Garcia-Fernandez, C. Decroze, and D. Carsenat, Antenna radiation pattern measurements in reverberation chamber using Doppler analysis, Conference on Antenna Measurements & Applications (CAMA), 2014, pp. 1–4.

116. E. Genender, C. L. Holloway, K. A. Remley, J. Ladbury, G. Koepke, and H. Garbe, Use of reverberation chamber to simulate the power delay profile of a wireless environment, 2008 International Symposium on Electromagnetic Compatibility - EMC Europe, 2008, pp. 1–6.

117. E. Genender, C. L. Holloway, K. A. Remley, J. M. Ladbury, G. Koepke, and H. Garbe, Simulating the multipath channel with a reverberation chamber: Application to bit error rate measurements, IEEE Trans. Electromagn. Compat. 52(2010) 766–777.

118. A. Gifuni, On the Measurement of the Absorption Cross Section and Material Reflectivity in a Reverberation Chamber, IEEE Trans. Electromagn. Compat., (2009) 1047–1050.

119. K. Harima, Radiated emission measurement of small EUT by using a reverberation chamber, 2003 IEEE International Symposium on Electromagnetic Compatibility, 2003, pp. 471-474.

120. R. Heinrich, R. Bechly, and B. Deutschmann, Radiated immunity testing of integrated circuits in reverberation chambers, IEEE International Symposium on Electromagnetic Compatibility, 2012, pp. 8–11.

121. D. A. Hill, Spatial correlation function for fields in a reverberation chamber, IEEE Trans. Electromagn. Compat. 37(1995) 138.

122. D. A. Hill and J. M. Ladbury, Spatial-correlation functions of fields and energy density in a reverberation chamber, IEEE Trans. Electromagn. Compat. 44(2002) 95–101.

123. C. L. Holloway, D. A. Hill, J. Ladbury, G. Koepke, and R. Garzia, Shielding effectiveness measurements of materials using nested reverberation chambers, IEEE Trans. Electromagn. Compat. 45(2003) 350–356.

124. G. Koepke and J. Ladbury, Radiated Power Measurements in Reverberation Chambers, 56th ARFTG Conference Digest, 2000, pp. 1–7.

125. H. G. Krauthauser and M. Herbrig, Yet another antenna efficiency measurement method in reverberation chambers, 2010 IEEE International Symposium on Electromagnetic Compatibility, 2010, pp. 536–540.

126. H. G. Krauthauser, On the Measurement of Total Radiated Power in Uncalibrated Reverberation Chambers, IEEE Transactions on Electromagnetic Compatibility, 49(2007) 270-278.

127. M. Magdowski and R. Vick, Monte Carlo simulation of the statistical uncertainty of emission measurements in an ideal reverberation chamber, International Symposium on Electromagnetic Compatibility, 2017, pp. 1–6.

128. D. Micheli, M. Barazzetta, F. Moglie, and V. M. Primiani, Power Boosting and Compensation During OTA Testing of a Real 4G LTE Base Station in Reverberation Chamber, IEEE Trans. Electromagn. Compat. 57(2015) 623–634.

129. C. Carobbi and R. Serra, Exponential correlation model for electric field intensity in reverberation chambers, 16th European Conference on Antennas and Propagation (EuCAP), 2022, pp. 1–5.

130. J. Page, Stirred mode reverberation chambers for radio type approval emission measurements, IEE Colloquium on EMC Tests in Screened Rooms, 1995, pp. 1–11.

131. G. B. Tait, C. Hager, M. B. Slocum, and M. O. Hatfield, On Measuring Shielding Effectiveness of Sparsely Moded Enclosures in a Reverberation Chamber, IEEE Trans. Electromagn. Compat. 55(2013) 231–240.

132. G. B. Tait, C. E. Hager, T. T. Baseler, and M. B. Slocum, Ambient Power Density and Electric Field From Broadband Wireless Emissions in a Reverberant Space, IEEE Trans. Electromagn. Compat. 58(2016) 307–313.

133. R. Wen, Using reverberation chamber for vehicle radiated emission measurement, 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 2015, pp. 75–77.

134. J. Zheng, X. Chen, X. Liu, M. Zhang, B. Liu, and Y. Huang, An Improved Method for Reconstructing Antenna Radiation Pattern in a Loaded Reverberation Chamber, IEEE Trans. Instrum. Meas. 71(2022) 1-12.

135. A. Reis, F. Sarrazin, P. Besnier, P. Pouliguen, and E. Richalot, Contactless Antenna Gain Pattern Estimation from Backscattering Coefficient Measurement Performed Within a Reverberation Chamber, IEEE Trans. Antennas Propag. 70(2022), 2318–2321

136. Ding Yu, Gang Jiang, Lin Yang, and Demin Fu, An efficient near-field measurement technique for predicting far-field monostatic RCS of targets, 2015 IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), 2015, pp. 189–192.

137. A. Boyer, N. Nolhier, F. Caignet, and S. Ben Dhia, On the Correlation Between Near-Field Scan Immunity and Radiated Immunity at Printed Circuit Board Level – Part II, IEEE Trans. Electromagn. Compat. (2022)1–13.

138. J. Jia, D. Rinas, and S. Frei, Predicting the Radiated Emissions of Automotive Systems According to CISPR 25 Using Current Scan Methods, IEEE Trans. Electromagn. Compat. 58(2016) 409–418.

139. A.-M. Silaghi, R.-A. Aipu, A. De Sabata, and P.-M. Nicolae, Near-field scan technique for reducing radiated emissions in automotive EMC, 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), 2018, pp. 831–836.

140. C. Olivieri et al., Analysis of Near-Field Emissions From Common-Mode Filters Based on EBG Structures, IEEE Trans. Electromagn. Compat. 59(2017) 593–599.

141. G. Langer and J. Hacker, Determining the Emission of a Device from the Near Field of an IC, 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits, 2019, pp. 67–69.

142. A.Durier, S. Ben Dhia, and T. Dubois, Study of the coupling of wide band Near Field Scan probe dedicated to the investigation of the radiated immunity of Printed Circuit Boards, 23rd Workshop on Signal and Power Integrity (SPI), 2019, pp. 1–4.

143. ANSI, IEEE Standard Methods for Measuring Electromagnetic Field Strength of Sinusoidal Continuous Waves, 30 Hz to 30 GHz, 1991(1991) 1–55.

144. L. EMV Technik, Near-Field Probes, 2022. https://www.langer-emv.de/en/category/near-field-probes/19.

145. Z. Yan, J. Wang, W. Zhang, Y. Wang, and J. Fan, A Miniature Ultrawideband Electric Field Probe Based on Coax-Thru-Hole via Array for Near-Field Measurement, IEEE Trans. Instrum. Meas. 66(2017) 2762–2770.

146. E. Jordan, Electromagnetic Waves and Radiating Systems. Prentice Hall, 1668.

147. O. Harwot, Fast near-field characterization of integrated circuits electromagnetic interference, 21st International Conference Radioelektronika, 2011, pp. 1–4.

148. F. Xiao, T. Takatsu, K. Murano, and Y. Kami, Complex near electromagnetic field scanning on printed circuit board, International Symposium on Electromagnetic Compatibility - EMC EUROPE, 2012, pp. 1–4.

149. M. H. Baharuddin, Measurement and Characterisation of Stochastic Fields, Ph.D Thesis, University of Nottingham, 2019.

150. H. H. Park, J. D. Lim, H. B. Park, and J. Kim, Near-field shielDing measurement of small shield cans in metallic mobile devices for RF interference analysis, Electron. Lett. 52(2016) 980–982.

151. H. Rezaei et al., Source Reconstruction in Near-Field Scanning Using Inverse MoM for RFI Application, IEEE Trans. Electromagn. Compat. 62(2020) 1628–1636.

152. J. L. Araque Quijano and G. Vecchi, Near- and Very Near-Field Accuracy in 3-D Source Reconstruction, IEEE Antennas Wirel. Propag. Lett., 9(2010) 634–637.

153. S. Piersanti et al., Near-Field Shielding Performances of EMI Noise Suppression Absorbers, IEEE Trans. Electromagn. Compat., 59(2017) 654–661.

154. P. Padmanabhan, K. Hardin, and W. Smith, Broadband measurement of near-fields for predicting far-fields for EMC applications, 2014 IEEE International Symposium on Electromagnetic Compatibility (EMC), 2014, pp. 702–706.

155. W. Liu, Z. Yan, and Z. Min, The Far-field Estimation for Microstrip Line Based on Near-field Scanning, 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 2018, pp. 1–4.

156. Y. Liu, B. Ravelo, and A. K. Jastrzebski, Time-Domain Magnetic Dipole Model of PCB Near-Field Emission, IEEE Trans. Electromagn. Compat. 58(2016) 1561–1569.

157. J. Karpowicz, P. Bienkowski, and J. Kieliszek, Model of the minimum requirements regarding electric and magnetic field strength measurement devices for use in the near-field occupational exposure in compliance testing with respect to the requirements of European Directive 2013/35/EU, 2016 International Symposium on Electromagnetic Compatibility - EMC EUROPE, 2016, pp. 668–671

158. K. Jomaa, F. Ndagijimana, H. Ayad, M. Fadlallah, and J. Jomaah, Near-field characterization for 13.56 MHz RFID antenna, 2017 International Symposium on Electromagnetic Compatibility - EMC EUROPE, 2017, pp. 1–4.

159. S. Jog, I. Deshpande, V. Bhatnagar, A. D. Roshan, and S. Gangwal, Analysis of the Near Field Emission from the PCB of a Car Deck Player, 2018 15th International Conference on ElectroMagnetic Interference & Compatibility (INCEMIC), 2018, pp. 1–4.

160. H. He, P. Maheshwari, and D. J. Pommerenke, The Development of an EM-Field Probing System for Manual Near-Field Scanning, IEEE Trans. Electromagn. Compat. 58(2016) 356–363.

161. L. Guan, G. Maghlakelidze, X. Yan, S. Shinde, and D. Pommerenke, Optimizing measurement SNR for weak near-field scanning applications, 2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), 2017, pp. 687–691.

162. G. Giordanengo, M. Righero, F. Vipiana, G. Vecchi, and M. Sabbadini, Fast Antenna Testing With Reduced Near Field Sampling, IEEE Trans. Antennas Propag. 62(2014) 2501–2513.

163. C. Christopoulos, Technical theme topics: Characterization of Emissions from PCBs Based on Near-field Scanning, IEEE Electromagn. Compat. Mag. 4(2015) 67–67, 2015.

164. B.-Y. Chen, W.-C. Wang, M.-J. Guo, S.-M. Wu, C.-H. Su, and M.-S. Lin, Investigating Simultaneous Switching Noise Distribution in Frequency Domains by Near Field Scan, 2019 Joint International Symposium on Electromagnetic Compatibility, Sapporo and Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Sapporo/APEMC), 2019, pp. 254–257.

165. Y. Zhao, D. W. P. Thomas, C. J. Smartt, X. Zhao, and L. Yan, Challenges of Time Domain Near Field Measurement of Complex Digital Circuit, 2019 ESA Workshop on Aerospace EMC (Aerospace EMC), 2019, pp. 1–4.

166. D. W. P. Thomas, M. H. Baharuddin, C. Smartt, G. Gradoni, G. Tanner, and S. Creagh, Reducing the complexity of near-field scanning of stochastic fields, 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), 2017, pp. 11–14.

167. D. W. P. Thomas et al., Near-field scanning of stochastic fields considering reduction of complexity, International Symposium on Electromagnetic Compatibility - EMC EUROPE, 2017, pp. 1–6.

168. M. H. Baharuddin et al., Analysis of Nonstationary Emissions for Efficient Characterization of Stochastic EM Fields, 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE), 2018, pp. 208–213.

169. A. Gil, J. Segura, and N. M. Temme, Numerical Methods for Special Functions. Philadelphia:Society for Industrial and Applied Mathematics, 2007.

170. M. Last and R. Shumway, Detecting abrupt changes in a piecewise locally stationary time series, J. Multivar. Anal. 99(2008) 191–214.

171. S. Adak, Time-Dependent Spectral Analysis of Nonstationary Time Series, J. Am. Stat. Assoc. 93(1998) 1488–1500.