Domestic waste (eggshells and banana peels particles) as sustainable and renewable resources for improving resin-based brakepad performance: Bibliometric literature review, techno-economic analysis, dual-sized reinforcing experiments, to comparison ...

Main Article Content

Asep Bayu Dani Nandiyanto
Risti Ragadhita
Meli Fiandini
Dwi Fitria Al Husaeni
Dwi Novia Al Husaeni
Farid Fadhillah


The objective of this study is to develop a new environmentally-friendly brake pad made from eggshells (Es) and banana peels (BPs) as reinforcement agents. E and BP particles as dual reinforcement with various compositions were combined. The E/BP mixture was then embedded on a polymer matrix composing a resin/hardener mixture in a 1:1 ratio. As a standard, brake pads using a single reinforcement of E and BP particles were also fabricated. Physical properties (i.e. particle size, surface roughness, morphology, and density), as well as mechanical properties (i.e. hardness, wear rate, and friction coefficient properties) were investigated. It was observed that using dual reinforcements was preferable (compared to using single reinforcements) because they had a synergistic effect on the mechanical properties of the brake pad. The best mechanical properties were found in dual reinforcements of brake pad specimens using E/BP particles with a higher BP ratio in which the value of the stiffness test, puncture test, wear rate, and coefficient of friction were 4.5 MPa, 86.80, 0.093×10-4 g/s.mm2, and 1.67×10-4, respectively. A high BP particle ratio played a dominant role in dual reinforcements, increasing the resin's bonding ability and resulting in good adhesion between the reinforcement and matrix. When compared to commercial brake pads, the brake pad specimens fabricated in this study met the standards. The techno-economic analysis also confirmed the prospective production of brake pads from E and BP particles (compared to commercial brake pads). From this research, it is expected that environmentally friendly and low-cost brake pads can be used to replace the dangerous friction materials.


Download data is not yet available.

Article Details

How to Cite
Nandiyanto, A. B. D., Ragadhita, R., Fiandini, M., Al Husaeni, D. F., Al Husaeni, D. N., & Fadhillah, F. (2022). Domestic waste (eggshells and banana peels particles) as sustainable and renewable resources for improving resin-based brakepad performance: Bibliometric literature review, techno-economic analysis, dual-sized reinforcing experiments, to comparison . Communications in Science and Technology, 7(1), 50-61.


1. M. A. Maleque, A. Atiqah, R. J. Talib and H. Zahurin, New natural fibre reinforced aluminium composite for automotive brake pad, Int. J. Mech. Mater. Eng., 7(2) (2012) 166-170.

2. D. S. E. A. Chan and G. W. Stachowiak, Review of automotive brake friction materials, P I MECH ENG D-J AUT, 218(9) (2004) 953-966.

3. D. Kolluri, A. K. Ghosh and J. Bijwe, Analysis of load-speed sensitivity of friction composites based on various synthetic graphites, Wear, 266(1-2) (2009) 266-274.

4. G. Ak?nc?o?lu, H. Öktem, I. Uygur and S. Ak?nc?o?lu, Determination of friction-wear performance and properties of eco-friendly brake pads reinforced with hazelnut shell and boron dusts, Arab. J. Sci. Eng., 43(9) (2018) 4727-4737.

5. W. B. Wannik, A. F. Ayob, S. Syahrullail, H. H. Masjuki and M. F. Ahmad, The effect of boron friction modifier on the performance of brake pads, Int. J. Mech. Mater. Eng., 7(1) (2012) 31-35.

6. A. B. D. Nandiyanto, S. N. Hofifah, G. C. S. Girsang, S. R. Putri, B. A. Budiman, F. Triawan, et al, The effects of rice husk particles size as a reinforcement component on resin-based brake pad performance: From literature review on the use of agricultural waste as a reinforcement material, chemical polymerization reaction of epoxy resin, to experiments, AE., 4(2) (2021) 68-82.

7. R. O. Edokpia, V. S. Aigbodion, C. U. Atuanya, J. O. Agunsoye and K. Mu'azu, Experimental study of the properties of brake pad using eggshell particles–Gum Arabic composites, J Chinese Adv Mater Soc.ens, 4(2) (2016) 172-184.

8. H. Sa’ad, B. D. Omoleyomi, E. A. Alhassan, E. O. Ariyo and T. Abadunmi, Mechanical performance of abrasive sandpaper made with palm kernel shells and coconut shells, J. Mech. Behav. Mater., 30(1) (2021) 28-37.

9. T. P. Mohan, K. Kanny, Thermal, mechanical and physical properties of nanoeggshell particle-filled epoxy nanocomposites, J. Compos. Mater., 52(29) (2018) 3989-4000.

10. J. R. Woodard, A. J. Hilldore, S. K. Lan, C. J. Park, A. W. Morgan, J. A. C. Eurell, et al, The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity, Biomaterials, 28(1) (2007) 45-54.

11. T. A. Hassan, V. K. Rangari and S. Jeelani, Mechanical and thermal properties of bio?based CaCO3/soybean?based hybrid unsaturated polyester nanocomposites, J. Appl. Polym. Sci., 130(3) (2013) 1442-1452.

12. O. J. Gbadeyan, S. Adali, G. Bright, B. Sithole, B., and O. Awogbemi, Studies on the mechanical and absorption properties of achatina fulica snail and eggshells reinforced composite materials, Compos. Struct., 239 (2020) 112043.

13. U. D. Idris, V. S. Aigbodion, I. J. Abubakar and C. I. Nwoye, Eco-friendly asbestos free brake-pad: Using banana peels, J. King Saud Univ. Eng. Sci., 27(2) (2015) 185-192.

14. S. Yashwhanth, M. M. Mohan, R. Anandhan and S. K. Selvaraj, Present knowledge and perspective on the role of natural fibers in the brake pad material, Materials Today: Proceedings, 46 (2021) 7329-7337.

15. A. B. D. Nandiyanto, R. Andika, M. Aziz and L. S. Riza, Working volume and milling time on the product size/morphology, product yield, and electricity consumption in the ball-milling process of organic material, Indones. J. Sci. Technol., 3(2) (2018) 82-94.

16. A. B. D. Nandiyanto, R. Zaen and R.Oktiani, Working volume in high-energy ball-milling process on breakage characteristics and adsorption performance of rice straw ash, Arab. J. Sci. Eng., 43(11) (2018) 6057-6066.

17. Y. Sukrawan, A. Hamdani and S.A. Mardani, Effect of bamboo weight faction on mechanical properties in non-asbestos composite of motorcycle brake pad, Mater. Phys. Mech., 42(3) (2019) 367-372.

18. A. B. D. Nandiyanto, M. K. Biddinika and F. Triawan, Evaluation on research effectiveness in a subject area among top class universities: a case of Indonesia’s academic publication dataset on chemical and material sciences, J. Eng. Sci. Technol, 15(3) (2020) 1747-1775.

19. H. Soegoto, E. S. Soegoto, S. Luckyardi and A. A. Rafdhi, (2022). A Bibliometric Analysis of Management Bioenergy Research Using Vosviewer Application, Indones. J. Sci. Technol., 7(1) (2022) 89-104.

20. A. B. D. Nandiyanto and D. F. Al Husaeni, A bibliometric analysis of materials research in Indonesian journal using VOSviewer, J. Eng. Res., (2021).

21. R. Ragadhita and A. B. D. Nandiyanto, Computational Bibliometric Analysis on Publication of Techno-Economic Education, Indo. J. Multidicip. Res., 2(1) (2022) 213-220.

22. A. B. D. Nandiyanto, D. N. Al Husaeni, D. F. Al Husaeni, A bibliometric analysis of chemical engineering research using vosviewer and its correlation with covid-19 pandemic condition, J. Eng. Sci. Technol, 16(6) (2021) 4414-4422.

23. A. B. D. Nandiyanto, R. Oktiani and R.Ragadhita, How to read and interpret FTIR spectroscope of organic material, Indones. J. Sci. Technol., 4(1) (2019) 97-118.

24. S. Kamsonlian, S. Suresh, C. B. Majumder and S. Chand, Characterization of banana and orange peels: biosorption mechanism, Int. j. sci. technol. manag., 2(4) (2011) 1-7.

25. L. Mohammed, M. N. Ansari, G. Pua, M. Jawaid and M. S. Islam, A review on natural fiber reinforced polymer composite and its applications, Int. J. Polym. Sci., (2015).

26. N. A. A. N. Yusuf, M. K. A. A. Razab, N. Hakimin, M. Kamal, N. Ameram, M. N. A. Nordin, Characterization of Bio-Polymer Composite Thin Film Based on Banana Peel and Eggshell, Int. j. curr. eng. technol., Malaysia (2018).

27. I. M. De Rosa, J. M. Kenny, M. Maniruzzaman, M. Moniruzzaman, M. Monti, D. Puglia et al, (2011). Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres, Compos. Sci. Technol., 71(2) (2011) 246-254.

28. M. S. Tizo, L. A. V. Blanco, A. C. Q. Cagas, B. R. B. D. Cruz, J. C. Encoy, J. V. Gunting and V. I. F. Mabayo, Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution, Sustain. Environ. Res., 28(6) (2018) 326-332.

29. R. O. Edokpia, V. S. Aigbodion, O. B. Obiorah and C. U. Atuanya, WITHDRAWN: Evaluation of the properties of ecofriendly brake pad using eggshell particles–Gum Arabic, (2014)

30. N. A. Ademoh and A. I. Olabisi, (2015). Development and evaluation of maize husks (asbestos-free) based brake pad, Development, 5(2) (2015) 67-80.

31. S. Anggraeni, R. Maulida, R. Ragadhita, S. N. Hofifah and A. B. D. Nandiyanto, Teaching the Effect of Liming Concentration on Mechanical Characteristics of Cowhide Crackers for Senior High School Students, J. Eng. Educ. Transform., 34(Special Issue) (2021).

32. P. K. Chattopadhyay, U. Basuli and S. Chattopadhyay, Studies on novel dual filler based epoxidized natural rubber nanocomposite, Polym. Compos., 31(5) (2010) 835-846.

33. N. A. A. N. Yusuf, M. K. A. A. Razab, M. B. A. Bakar, K. J. Yen, C. W. Tung, R. S. M. Ghani, et al, Determination of structural, physical, and thermal properties of biocomposite thin film from waste banana peel, J. Teknol., 81(1) (2019).

34. L. I. Ming, L. Meng, Y. A. N. G. Yuanyi, Y. L. Zaoyuan and G. Xiaoyang, Mechanical properties of oil well cement stone reinforced with hybrid fiber of calcium carbonate whisker and carbon fiber, Pet. Explor. Dev., 42(1) (2015) 104-111.

35. Zwawi, M, A review on natural fiber bio-composites, surface modifications and applications. Molecules, 26(2) (2021) 404.

36. R. Hinrichs, M. R. Soares, R. G. Lamb, M. R. Soares and M. A. Z. Vasconcellos, Phase characterization of debris generated in brake pad coefficient of friction tests, Wear, 270(7-8) (2011) 515-519.

37. S. Sheng, H. Zhou, X. Wang, Y. Qiao, H. Yuan, J. Chen and J. Li, Friction and Wear Behaviors of Fe-19Cr-15Mn-0.66 N Steel at High Temperature, Coatings, 11(11) (2021) 1285.