Electricity generation and winery wastewater treatment using silica modified ceramic separator integrated with yeast-based microbial fuel cell
Main Article Content
Abstract
The ceramic separator has been interested in low-cost alternative proton exchange membranes in a microbial fuel cell (MFC). In this study, the silica-modified ceramic separator has been integrated with the yeast-based MFC for electricity generation and phenol treatment from the winery wastewater. The 30% (w/w) silica powder was mixed with the 70% (w/w) natural clay. The modified ceramic plates (0.2, 0.5, and 1.0 cm of thickness) were prepared at 680°C and used for MFC operation. As an anolyte, synthetic winery wastewater (2,000 mg COD/L and 100 mg/L phenol) with 5% (v/v) ethanol was used. The ethanol-tolerant yeast Pichia sp. ET-KK was used as an anodic catalyst. The results showed the maximal power density of 0.212 W/m2 and phenol removal of 95.05% were reached from the 0.2-thick ceramic plate integrated MFC. This study demonstrated that the silica-modified ceramic separator has a high potential for enhancing electricity generation in the yeast-based MFC.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. L. A. Ioannou, G. L. Puma and D. Fatta-Kassinos, Treatment of winery wastewater by physicochemical, biological and advanced processes: a review, J. Hazard. Mater. 286 (2015) 343-368.
3. A. Rodriguez-Caballero, J. B. Ramond, P. J. Welz, D. A. Cowan, M. Odlare and S. G. Burton, Treatment of high ethanol concentration wastewater by biological sand filters: Enhanced COD removal and bacterial community dynamics, J. Environ. Manag. 109 (2012) 54-60.
4. C. Tikka, H. P. Osuru, N. Atluri, P. Chakravarthi, V. Raghavulu, N. K. Yellapu, I. S. Mannur, U. V. Prasad, S. Aluru, N. Varma and M. Bhaskar, Isolation and characterization of ethanol tolerant yeast strains, Bioinformations. 9 (2013) 421-425.
5. B. Hou, R. Zhang, X. Liu, Y. Li, P. Liu and J. Lu. Study of membrane fouling mechanism during the phenol degradation in microbial fuel cell and membrane biorerator coupling system, Bioresour. Technol. 338 (2021)125504.
6. J. V. Boas, L. Peixoto, V. B. Oliveira, M. Simoes and A. M. F. R. Pinto, Cyclic voltammetry study of a yeast-based microbial fuel cell, Bioresour. Technol. Rep. 17 (2022) 100974.
7. A. Shrivastava, M. Pal and R. K. Sharma, Simultaneous production of bioethanol and bioelectricity in a membrane-less single-chambered yeast fuel cell by Saccharomyces cerevisiae and Pichia fermentans. Arabian J. Sci. Eng. 47 (2022) 6763-6771.
8. E. T. Sayed, M. A. Abdelkareem, H. Alawadhi, K. Elsaid, T. Wilberforce and A. G. Olabi, Graphilic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells. Energy. 221 (2021) 119849.
9. M. Rahimnejad, G. Bakeri, M. Ghasemi and A. Zirepour, A review on the role of proton exchange membrane on the performance of microbial fuel cell, Polymer. Advan. Technol. 25 (2014) 1426-1432.
10. X. A. Walter, E. Madrid, I. Gajda, J. Greenman, I. Leropoulos, Microbial fuel cell scale-up options: Performance evalustion of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes. J. Power Sourc. 520 (2022) 230875.
11. A. Raychauhuri, R. N. Sahoo and M. Behera, Application of clayware ceramic separator modified with silica in microbial fuel cell for bioelectricity generation during rice mill wastewater treatment, Water Sci. Technol. 84 (2021) 66-76.
12. A. Raychaudhuri and M. Behera, Ceramic membrance modified with rice husk ash for application in microbial fuel cells, Electrochim. Acta. 363 (2020), 137261.
13. V. Yousefi, D. Mohebbi-Kalhori and A. Samimi, Start-up investigation of the self-assembled chitosan/montmorillonite nanocomposite over the ceramic support as a low-cost membrane for microbial fuel cell, Int. J. Hydrogen Ener. 45 (2020) 4808-4820.
14. M. J. Salar-Garcia, X. A. Walter, J. Gurauskis, A. de Ramon Fernandez and I. Ieropoulos, Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators, Electrochim. Acta. 367 (2021) 137385.
15. G. Pasternak, N. Ormeno-Cano and P. Rutkowski, Recycled waste polypropylene composite ceramic membranes for extended lifetime of microbial fuel cells, Chem. Eng. J. 425 (2021) 130707.
16. J. Rodriguez, L. Mais, R. Campana, L. Piroddi, M. Mascia, J. Gurauskis, A. Vacca and S. Palmas, Comprehensive characterization of a cost-effective microbial fuel cell with Pt-free catalyst cathode and slip-casted ceramic membrane, Int. J. Hydrogen Ener. 46 (2021) 26205-26223.
17. M. Kim, Y. E. Song, S. Li and J. R. Kim, Microwave-treated expandable graphite granule for enhancing the bioelectricity generation of microbial fuel cells, Electrochem. Sci. Technol. 12 (2021) 297-301.
18. P. J. Welz and M. L. Rose-Hill, Biodegradation of organics and accumulation of metabolites in experimental biological sand filters used for the treatment of synthetic winery wastewater: A mesocosm, J. Water Proc. Eng. 3 (2014) 155-163.
19. P. Chaijak, C. Sukkasem, M. Lertworapreecha, P. Boonsawang, S. Wijasika and C. Sato, Enhancing electricity generation using a laccase-based microbial fuel cell with yeast Galactomyces reessii on the cathode, J. Microbiol. Biotechnol. 28 (2018) 1360-1366.
20. P. Chaijak, M. Lertworapreecha and C. Sukkasem, Phenol removal from palm oil mill effluent using Galactomyces reessii termite-associated yeast, Pol. J. Environ. Stud. 27 (2018) 39-44.
21. H. B. Khalili, D. Mohebbi-Kalhori, and M. S. Afarani, Microbial fuel cell (MFC) using commercially available unglazed ceramic wares: Low -cost ceramic separators suitable for scale-up, Int. J. Hydrogen Ener. 42 (2017) 8233-8241.
22. M. F. H. Me and M. H. A. Bakar, Tubular ceramic performance as separator for microbial fuel cell: A review, Int. J. Hydrogen Ener. 45 (2020) 22340-22348.
23. I. Das, S. Das, R. Dixit and M. M. Ghangrekar, Goethite supplemented natural clay ceramic as an alternative proton exchange membrane and its application in microbial fuel cell, Ionics. 26 (2020) 3061-3072.
24. I. Merino-Jimenez, F. Gonzalez-Juarez, J. Greenman and I. Ieropoulos, Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation, J. Power Sour. 429 (2019) 30-37.
25. J. Suransh, A. K. Tiwari and A. K. Mungray. Modification of clayware ceramic membrane for enhancing the performance of microbial fuel cell, Environ. Prog. Sust. Ener. 39 (2020) e13427.
26. M. Cheraghipoor, D. Mohebbi-Kalhori, M. Noroozifar and M. T. Maghsoodlou. Comparative study of bioelectricity generation in a microbial fuel cell using ceramic membranes made of ceramic powder, Kalporgan’s soil, and acid leached Kalporgan’s soil, Energy. 178 (2019) 368-377.
27. V. Yousefi, D. Mohebbi and A. Samimi, Start-up investigation of the self-assembled chitosan/montmorillonite nanocomposite over the ceramic support as a low-cost membrane for microbial fuel cell application, Int. J. Hydrogen Ener. 45 (2020) 4804-4820.
28. S. A. Alftessi, M. H. D. Othman, M. R. Adam, T. M. Farag, A. F. Ismail, M. A. Rahman, J. Jaafar, M. A. Habib, Y. O. Raji and S. K. Hubadillah, Novel silica sand hollow fibre ceramic membrane for oily wastewater treatment, J. Env. Chem. Eng. 9 (2021) 104975.
29. T. Liu, A. V. Nadaraja, J. Friesen, K. Gill, M. I. Lam and D. J. Roberts, Narrow pH tolerance found for a microbial fuel cell treating winery wastewater, J. Appl. Microbiol. 131 (2021) 2280-2293.
30. T. Liu, A. V. Nadaraja, J. Shi and D. J. Roberts, Stable performance of microbial fuel cell technology treating winery wastewater irrespective of seasonal variations, J. Environ. Env. Eng. 147 (2021) 1.
31. J. Vias Boas, L. Peixoto, V. B. Oliveira, M. Simoes and A. M. F. R. Pinto, Cyclic voltammetry study of a yeast-based microbial fuel cell, Bioresour. Technol. Rep. 17 (2022) 100974.
32. B. Taskan, Investigation of electricity generation performance of grape marc in membrane-less microbial fuel cell, Environ. Res. Technol. 4 (2021) 108-115.
33. E. D. Penteado, C. M. Fernandez-Marchante, M. Zaiat, E. R. Gonzalez and M. A. Rodrigo, Optimization of the performance of a microbial fuel cell using the ratio electrode-surface anode-compartment volume, Braz. J. Chem. Eng. 35 (2018) 141-146.
34. E. D. Penteado, C. M. Fernandez-Merchante, M. Zaiat, P. Canizares, E. R. Gonzalez and M. A. R. Rodeigo, Energy recovey from winery wastewater using a dual chamber microbial fuel cell, J. Chem. Technol. Biotechnol. 91 (2016) 1802-1808.
35. T. P. Sciarria, G. Merlino, B. Scaglia, A. D’Epifanio, B. Mecheri, S. Borin, S. Licoccia and F. Adani, Electricity generation using red wine lees in air cathode microbial fuel cells, J. Power Sourc. 274 (2015) 393-399.
36. M. Sugnaux, M. Happe, C. P. Cachelin, O. Gloriod, G. Huguenin, M. Blatter and F. Fischer, Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell, Bioresour. Technol. 221 (2016) 61-69.
37. H. Luo, G. Liu, R. Zhang and S. Lin, Phenol degradation in microbial fuel cells, Chem. Eng. J. 147 (2009) 259-264.
38. H. Wu, Y. Fu, C. Guo, Y. Li, N. Jiang and C. Yin, Electricity generation and removal performance of a microbial fuel cell using sulfonated poly (ether ether ketone) as proton exchange membrane to treat phenol/acetone wastewater, Bioresour. Technol. 260 (2018) 130-134.
39. L. Moreno, M. Nemati and B. Predicala, Biodegradation of phenol in batch and continuous flow microbial fuel cells with rod and granular graphite electrodes, Environ. Technol. 39 (2018) 144-156.
40. M. Zhang, Y. Wang, P. Liang, X. Zhao, M. Liang and B. Zhou, Combined photoelectrocatalytic microbial fuel cell (PEC-MFC) degradation of refractory organic pollutants and in-situ electricity utilization, Chemosphere. 214 (2019) 669-678.
41. H. Hassan, B. Jin, E. Donner, S. Vasileiadis, C. Saint and S. Dai, Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity: Microbial consortia could make differences, Chem. Eng. J. 332 (2018) 647-657.
42. J. Shen, Z. Du, J. Li and F. Cheng, Cometabolism for enhanced phenol degradation and bioelectricity generation in microbial fuel cell, Bioeletrochem. 134 (2020) 107527.
43. J. Shen, J. Li, F. Li, H. Zhao, Z. Du and F. Cheng, Effect of lignite activated coke packing on power generation and phenol degradation in microbial fuel cell treating high strength phenolic wastewater, Chem. Eng. J. 417 (2021) 128091.
44. B. Hou, R. Zhang, X. Liu, Y. Li, P. Liu and J. Lu, Study of membrane fouling mechanism during the phenol degradation in microbial fuel cell and membrane bioreactor coupling system, Bioresour. Technol. 338 (2021) 125504.