Tuning the magnetic states in AA-stacked bilayer zigzag graphene nanoribbons

Main Article Content

Teguh Budi Prayitno


Available reports mentioned that the magnetic ground state in the AA-stacked bilayer zigzag graphene nanoribbons is the non-magnetic state. As a consequence, it is impossible to exploit magnetism for future electronic devices. This paper aims to show how to generate magnetism in the AA-stacked bilayer zigzag graphene nanoribbons by employing ?rst-principles calculations. As we stacked different ribbon widths, the magnetic ground states appeared for all the thicknesses. In general, the G-type antiferromagnetic state, which is the antiferromagnetic alignment between both intraplane- and interplane-edge carbon atoms, is the ground state for all the thicknesses. We also found that the degenerate magnetic ground states and excited states may appear under certain thicknesses, thus yielding the richness of the magnetic state. As hole-electron doping was applied, a phase transition of magnetic ground state emerged for certain thicknesses, indicating that a new magnetic ground state in the AA-stacked bilayer zigzag graphene nanoribbons can be tuned by the doping.


Download data is not yet available.

Article Details

How to Cite
Prayitno, T. B. (2022). Tuning the magnetic states in AA-stacked bilayer zigzag graphene nanoribbons. Communications in Science and Technology, 7(1), 73-79. https://doi.org/10.21924/cst.7.1.2022.823


1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., Electric ?eld effect in atomically thin carbon ?lms, Science 306 (2004) 666-669.

2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197-200.

3. A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Mater. 6 (2007) 183-191.

4. L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, et al., High-speed graphene transistors with a self-aligned nanowire gate, Nature 467 (2010) 305-308.

5. F. Schwierz, Graphene transistors, Nat. Nanotech. 5 (2010) 487-496.

6. M. Fujita, K. Wakabayashi, K. Nakada and K. Kusakabe, Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65 (1996) 1920-1923.

7. K. Nakada, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54 (1996) 17954-17961.

8. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458 (2009) 872-876.

9. G. Z. Magda, X. Jin, I. Hagyma´si, P. Vancso´, Z. Osva´th, P. Nemes-Incze, et al., Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature 514 (2014) 608-611.

10. P. Ruf?eux, S. Wang, B. Yang, C. Sa´nchez-Sa´nchez, J. Liu, T. Dienel, et al., On surface synthesis of graphene nanoribbons with zigzag edge topology, Nature 531 (2016) 489–492.

11. S. Kawai, S. Nakatsuka, T. Hatakeyama, R. Pawlak, T. Meier, J. Tracey, et al., Multiple heteroatom substitution to graphene nanoribbon, Sci. Adv. 4 (2018) eaar7181.

12. Y.-W Son, M. L. Cohen and S. G. Louie, Half-metallic graphene nanoribbons, Nature 444 (2006) 347-349.

13. E. Rudberg, P. Sa?ek and Y. Luo, Nonlocal exchange interaction removes half-metallicity in graphene nanoribbons, Nano Lett. 7 (2007) 2211.

14. E.-J. Kan, Z. Li, J. Yang and J. G. Hou, Will zigzag graphene nanoribbon turn to half metal under electric ?eld?, Appl. Phys. Lett. 91 (2007) 243116.

15. N. Gorjizadeh, A. A. Farajian, K. Esfarjani and Y. Kawazoe, Spin and band- gap engineering in doped graphene nanoribbons, Phys. Rev. B 78 (2008) 155427.

16. Z. Wang, Alignment of graphene nanoribbons by an electric ?eld, Carbon 47 (2009) 3050-3053.

17. B. Mandal, S. Sarkar, A. Pramanik and P. Sarkar, Doped defective graphene nanoribbons: a new class of materials with novel spin ?ltering properties, RSC Adv. 4 (2014) 49946-49952.

18. S. Okada, Energetics of nanoscale graphene ribbons: Edge geometries and electronic structures, Phys. Rev. B 77 (2008) 041408(R).

19. O. V. Yazyev and M. I. Katsnelson, Magnetic correlations at graphene edges: basis for novel spintronics devices, Phys. Rev. Lett. 100 (2008) 047209.

20. J.-W. Rhim and K. Moon, Spin stiffness of graphene and zigzag graphene nanoribbons, Phys. Rev. B 80 (2009) 155441.

21. F. J. Culchac, R. B. Capaz, A. T. Costa and A. Latge´, Magnetic response of zigzag nanoribbons under electric ?elds, J. Phys.: Condens. Matter 26 (2014) 216002.

22. T. B. Prayitno, Impossibility of increasing Ne´el temperature in zigzag graphene nanoribbon by electric ?eld and carrier doping, Physica E 129 (2021) 114641.

23. K. Sawada, F. Ishii and M. Saito, Band-gap tuning in magnetic graphene nanoribbons, Appl. Phys. Express 1 (2008) 064004.

24. H. Xie, J. -H. Gao and D. Han, Excited spin density waves in zigzag graphene nanoribbons, New J. Phys. 20 (2018) 013035.

25. C. Huang, H. Wu, K. Deng and E. Kan, Edge-modi?ed graphene nanoribbons: appearance of robust spiral magnetism, J. Phys. Chem. C 121 (2017) 1371-1376.

26. J. T. Liang, X. H. Yan, Y. Zhang, Y. D. Guo and Y. Xiao, Noncollinear magnetism in Lithium-doped zigzag graphene nanoribbons, J. Magn. Magn. Mater. 480 (2019) 101-107.

27. T. B. Prayitno, Electric-?eld-induced spin spiral state in bilayer zigzag graphene nanoribbons, J. Phys.: Condens. Matter 33 (2021) 065805.

28. M. Y. Han, B. O¨zyilmaz, Y. Zhang and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys Rev Lett. 98 (2007) 206805.

29. X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Chemically derived, ultra- smooth graphene nanoribbon semiconductors. Science 319 (2008) 1229- 1232.

30. L. Jiao, L. Zhang, X. Wang, G. Diankov and H. Dai, Narrow graphene nanoribbons from carbon nanotubes, Nature 458 (2009) 877-880.

31. J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo and L. M. K. Vandersypen, Gate-induced insulating state in bilayer graphene devices, Nat. Mater. 7 (2008) 151-157.

32. B. N. Szafranek, D. Schall, M. Otto, D. Neumaier and H. Kurz, Electrical observation of a tunable band gap in bilayer graphene nanoribbons at room temperature, Appl. Phys. Lett. 96 (2010) 112103.

33. M. P. Lima, A. Fazzio and A. J. R. da Silva, Edge effects in bilayer graphene nanoribbons: Ab initio total-energy density functional theory calculations, Phys. Rev. B 79 (2009) 153401.

34. Y.-M. Lin and P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices, Nano Lett. 8 (2008) 2119–2125.

35. X. Zhong, R. Pandey and S. P. Karna, Stacking dependent electronic structure and transport in bilayer graphene nanoribbons, Carbon 50 (2012) 784- 790.

36. A. Orlof, J. Ruseckas and I. V. Zozoulenko, Effect of zigzag and armchair edges on the electronic transport in single-layer and bilayer graphene nanoribbons with defects, Phys. Rev. B 88 (2013) 125409.

37. J. W. Gonza´lez, H. Santos, M. Pacheco, L. Chico and L. Brey, Electronic transport through bilayer graphene ?akes, Phys. Rev. B 81 (2010) 195406.

38. E. Mostaani, N. D. Drummond and V. I. Fal’ko, Quantum monte carlo calculation of the binding energy of bilayer graphene, Phys. Rev. Lett. 115 (2015) 115501.

39. T. Asano and J. Nakamura, Edge-state-induced stacking of zigzag graphene nanoribbons, ACS Omega 4 (2019) 22035-22040.

40. K. Sawada, F. Ishii and M. Saito, First-principles study of carrier-induced ferromagnetism in bilayer and multilayer zigzag graphene nanoribbons, Appl. Phys. Lett. 104 (2014) 143111.

41. T. Ozaki, et al., Open-source package for material explorer (OpenMX), http://www.openmx-square.org.

42. T. Ozaki and H. Kino, Numerical atomic basis orbitals from H to Kr, Phys. Rev. B 69 (2004) 195113.

43. N. Troullier and J. L. Martins, Ef?cient pseudopotentials for plane-wave cal culations, Phys. Rev. B 43 (1991) 1993.

44. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865.

45. H. Lee, N. Park, Y.-W. Son, S. Han and J. Yu, Ferromagnetism at the edges of the stacked graphitic fragments: an ab initio study, Chem. Phys. Lett. 398 (2004) 207-211.

46. H. Lee, Y.-W. Son, N. Park, S. Han and J. Yu, Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge- localized states, Phys. Rev. B 72 (2005) 174431.

47. T. B. Prayitno, Spin stiffness of bilayer zigzag graphene nanoribbon for several con?gurations, Physica E 118 (2020) 113916.

48. K. Sawada, F. Ishii, M. Saito, S. Okada and T. Kawai, Phase control of graphene nanoribbon by carrier doping: appearance of noncollinear magnetism, Nano Lett. 9 (2009) 269–272.

49. T. B. Prayitno, Controlling phase transition in monolayer metal diiodides XI2 (X: Fe, Co, and Ni) by carrier doping, J. Phys.: Condens. Matter 33 (2021) 335803.

50. L. Pan, J. An and Y.-J. Liu, Noncollinear magnetism and half-metallicity in biased bilayer zigzag graphene nanoribbons, New J. Phys. 15 (2013) 043016.