Microwave-assisted biosynthesis of flower-shaped ZnO for photocatalyst in 4-nitrophenol degradation

Main Article Content

Ari Sulistyo Rini
Arie Purnomo Aji
Yolanda Rati


In this paper, the flower-shaped ZnO particles have been prepared via microwave-assisted biosynthesis technique using an aqueous extract of Sandoricum koetjape peel at various irradiation powers, i.e. 180, 360, 540, and 720 Watt. The synthesized flower-shaped ZnO particles were characterized using UV-Vis spectroscopy, x-ray diffraction (XRD), and field emission scanning electron microscope (FESEM). The UV-vis spectra exhibited ZnO absorption peaks in the UV region with band gap energy in the range of 3.25 - 3.29 eV. XRD analysis confirmed the hexagonal wurtzite crystal with the high purity of ZnO particles. The flower-shaped morphology of ZnO was evident in FESEM images with the decrease of particle diameter as the radiation power increased from 257 to 447 nm. ZnO prepared at 720 Watt (Z-720) succeeded in degrading 4-nitrophenol with the highest efficiency of 84.8 % after 240 min. Consequently, biosynthesis ZnO will have a great opportunity to be applied in degrading wastewater pollutants.


Download data is not yet available.

Article Details

How to Cite
Sulistyo Rini, A., Aji, A. P., & Rati, Y. (2022). Microwave-assisted biosynthesis of flower-shaped ZnO for photocatalyst in 4-nitrophenol degradation. Communications in Science and Technology, 7(2), 135-139. https://doi.org/10.21924/cst.7.2.2022.937


1. W. W. Anku, M. A. Mamo, and P. P. Govender, Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods, Phenolic Compd. - Nat. Sources, Importance Appl. (2017) 419-443.
2. A. A. Yahya, K. T. Rashid, M. Y. Ghadhban, N. E. Mousa, H. S. Majdi, I. K. Salih, et al., Removal of 4-nitrophenol from aqueous solution by using polyphenylsulfone-based blend membranes: Characterization and performance, Membranes (Basel). 11 (2021) 1–20.
3. F. M. M. Tchieno and I. K. Tonle, P-Nitrophenol determination and remediation: An overview, Rev. Anal. Chem. 37 (2018) 1–26.
4. G. Crini and E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett. 17 (2019) 145–155.
5. F. Sadeghfar, Z. Zalipour, M. Taghizadeh, A. Taghizadeh, and M. Ghaedi, Photodegradation processes, Interface Science and Technology. 32 (2021) 55-124.
6. F. Opoku, K. K. Govender, C. G. C. E. van Sittert, and P. P. Govender, Recent Progress in the Development of Semiconductor-Based Photocatalyst Materials for Applications in Photocatalytic Water Splitting and Degradation of Pollutants, Adv. Sustain. Syst. 1 (2017) 1-24.
7. M. Yasmina, K. Mourad, S. H. Mohammed, and C. Khaoula, Treatment heterogeneous photocatalysis; Factors influencing the photocatalytic degradation by TiO2, Energy Procedia. 50 (2014) 559–566.
8. A. A. McLain, Photocatalytic Properties of Zinc Oxide and Graphene Nanocomposites, Proc. Wisconsin Sp. Conf. 1 (2019) 1-5.
9. P. Rong, S. Ren, and Q. Yu, Fabrications and Applications of ZnO Nanomaterials in Flexible Functional Devices-A Review, Crit. Rev. Anal. Chem. 49 (2019) 336–349.
10. M. E. Fragalà, A. Di Mauro, D. A. Cristaldi, M. Cantarella, G. Impellizzeri, and V. Privitera, ZnO nanorods grown on ultrathin ZnO seed layers: Application in water treatment, J. Photochem. Photobiol. A Chem. 332 (2017).
11. A. K. Kapuscinska, M. Kwoka, M. A. Borysiewicz, M. Sgarzi, and G. Cuniberti, ZnO Low-Dimensional Thin Films Used as a Potential Material for Water Treatment, Eng. Proc. 6 (2021) 1-10.
12. T. A. Saleh, S. Majeed, A. Nayak, and B. Bhushan, Principles and advantages of microwave- assisted methods for the synthesis of nanomaterials for water purification, Adv. Nanomater. Water Eng. Treat. Hydraul. 16 (2017) 40–57.
13. E. J. Rupa, L. Kaliraj, S. Abid, D. C. Yang, and S. K. Jung, Synthesis of a zinc oxide nanoflower photocatalyst from sea buckthorn fruit for degradation of industrial dyes in wastewater treatment, Nanomaterials. 9 (2019) 1–18.
14. N. Rana, S. Chand, and A. K. Gathania, Green synthesis of zinc oxide nano-sized spherical particles using Terminalia chebula fruits extract for their photocatalytic applications, Int. Nano Lett. 6 (2016) 91–98.
15. M. J. Haque, M. M. Bellah, M. R. Hassan, and S. Rahman, Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties, Nano Express. 1 (2020) 1-14.
16. G. Manjari, S. Saran, S. Radhakrishanan, P. Rameshkumar, A. Pandikumar, and S. P. Devipriya, Facile green synthesis of Ag–Cu decorated ZnO nanocomposite for effective removal of toxic organic compounds and an efficient detection of nitrite ions, J. Environ. Manage. 262 (2020) 1-9.
17. L. Roza, V. Fauzia, and M. Y. Abd. Rahman, Tailoring the active surface sites of ZnO nanorods on the glass substrate for photocatalytic activity enhancement Liszulfah, Surfaces and Interfaces. 2019.
18. S. T. Tan, A. A. Umar, B. Aamna, N. Suratun, Y. Muhammad, C. Y. Chi, et al., Ag ? ZnO Nanoreactor Grown on FTO Substrate Exhibiting High Heterogeneous Photocatalytic Effi ciency, ACS pubs. 16 (2014) 314–320.
19. J. Wojnarowicz, T. Chudoba, S. Gierlotka, and W. Lojkowski, Effect of microwave radiation power on the size of aggregates of ZnO NPs prepared using microwave solvothermal synthesis, Nanomaterials. 8 (2018).
20. A. Gupta, H. S. Bhatti, D. Kumar, N. K. Verma, and R. P. Tandon, Nano and Bulk Crystal of ZnO: Synthesis and Characterization, J. Nanomater. 1 (2006) 1–9.
21. C. Mallikarjunaswamy, V. Lakshmi Ranganatha, R. Ramu, Udayabhanu, and G. Nagaraju, Facile microwave-assisted green synthesis of ZnO nanoparticles: application to photodegradation, antibacterial and antioxidant, J. Mater. Sci. Mater. Electron. 31 (2020) 1004–1021.
22. N. Anantachoke, P. Lomarat, W. Praserttirachai, R. Khammanit, and S. Mangmool, Thai fruits exhibit antioxidant activity and induction of antioxidant enzymes in HEK-293 cells, Evidence-based Complement. Altern. Med. 2016 (2016) 1-14.
23. A. S. Rini, Y. Rati, and S. W. Maisita, Synthesis of ZnO Nanoparticle using Sandoricum Koetjape Peel Extract as Bio-stabilizer under Microwave Irradiation, J. Phys. Conf. Ser. 2049 (2021) 1-7.
24. D. A. Gopakumar, A. R. Pai, D. Pasquini, L. Shao-Yuan, H. P. S. Abdul Khalil, and S. Thomas, Nanomaterials-State of Art, New Challenges, and Opportunities. Elsevier Inc. 1 (2018) 1-24.
25. G. Ramalingam, Quantum Confinement (2020) 1–8.
26. L. E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys. 80 (1984) 4403–4409.
27. C. Sekhar, E. A. G. Rama, and K. Y. V Rami, Green biosynthesis of ZnO nanomaterials and their anti ? bacterial activity by using Moringa Oleifera root aqueous extract, SN Appl. Sci. 2 (2020) 1–11.
28. A. Chafidz, A. R. Afandi, B. M. Rosa, J. Suhartono, P. Hidayat, and H. Junaedi, Production of silver nanoparticles via green method using banana raja peel extract as a reducing agent, Commun. Sci. Technol. 5 (2020) 112–118.
29. A. Kumar and G. Pandey, A review on the factors affecting the photocatalytic degradation of hazardous materials, Material Science & Engineering International Journal. 1 (2017) 106–114.
30. R. Trujillano, C. Najera, and V. Rives, Activity in the Photodegradation of 4-Nitrophenol of a Zn,Al Hydrotalcite-Like Solid and the Derived Alumina-Supported ZnO, Catal. MDPI. 10 (2020) 1–13.
31. A. S. Rini, A. Nabilla, and Y. Rati, Microwave-assisted biosynthesis and characterization of ZnO film for photocatalytic application in methylene blue degradation, Commun. Sci. Technol. 6 (2021) 69–73.
32. Sunaina, S. Devi, S. T. Nishanthi, S. K. Mehta, A. K. Ganguli, and M. Jha, Surface photosensitization of ZnO by ZnS to enhance the photodegradation efficiency for organic pollutants, SN Appl. Sci. 3 (2021).