Eco-friendly synthesis of magnetite based on tea dregs (Fe3O4-TD) for methylene blue adsorbent from simulation waste

Main Article Content

Maya Rahmayanti
Atika Yahdiyani
Ika Qurrotul Afifah


Methylene blue is a popular dye used in the batik industry; however, it potentially causes environmental problems in view of the residual MB content in the liquid waste, which is difficult to naturally degrade. This study aimed to synthesize Fe3O4-TD using tea dregs from household waste and its application as an adsorbent for methylene blue dye. The synthesis was carried out using the reverse co-precipitation method with water as a solvent at room temperature. Fe3O4-TD characterization using FTIR, XRD, and PSA. The adsorption of methylene blue (MB) on Fe3O4-TD was studied at various pH MB, reaction time, and concentration MB to determine the kinetic model and MB adsorption isotherm on Fe3O4-TD and the interactions that occur between MB and Fe3O4-TD. FTIR spectra and X-Ray diffractogram showed that the magnetite formed in a pure state did not mix with other iron oxides. The crystal and particle size of Fe3O4-TD is 18.92 nm and 26.70 µm, respectively. MB adsorption on Fe3O4-TD occurred well at pH > 3 and followed the Ho' pseudo-second-order kinetics model and the Freundlich isotherm model. The interactions between MB and Fe3O4-TD through electrostatic interactions, hydrogen bonds, and phi-phi interactions.


Download data is not yet available.

Article Details

How to Cite
Rahmayanti, M., Yahdiyani, A., & Afifah, I. Q. (2022). Eco-friendly synthesis of magnetite based on tea dregs (Fe3O4-TD) for methylene blue adsorbent from simulation waste. Communications in Science and Technology, 7(2), 119-126.


1. M. Rahmayanti, E. Yunita, and N. F. Y. Putri. Study of adsorption-desorption on batik industrial dyes (naphthol blue black) on magnetite modified humic acid (HA-Fe3O4). Jurnal Kimia Sains dan Aplikasi, 7 (2020) 244-248.
2. O. A. Saputra, Kurnia, S. Pujiasih, V. N. Rizki, B. Nurhayati, E. Pramono, C. Purnawan, Silylated-montmorillonite as co-adsorbent of chitosan composites for methylene blue dye removal in aqueous solution. Commun. Sci. Technol. 5 (2020) 45-52.
3. J. Shajeelammal, S. Mohammeda, K.P. Prathishc, A. Jeevae, A. Asok, and S. Shukla. Treatment of real time textile effluent containing azo reactive dyes via ozonation, modifified pulsed low frequency ultrasound cavitation, and integrated reactor. J. Hazard. Mater., (2022) 100098.
4. S. Ihaddadena, D. Aberkanea, A. Boukerrouia, and D. Robert. Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). JWPE, (2022) 102952.
5. W.M.A. El-Rahim, H. Moawad, A.Z.A. Azeiz, and M.J. Sadowsky. Biodegradation of azo dyes by bacterial or fungal consortium and identifification of the biodegradation products. Egypt. J. Aquat. Res., 3 (2021) 269–276.
6. M. Song, B. Mu, and Ru-Dan Huang. Syntheses, structures, electrochemistry and catalytic oxidation degradation of organic dyes of two new coordination polymers derived from Cu(II) and Mn(II) and 1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene. J. Solid State Chem., (2017) 1-7.
7. Q. Chen, C. Peng, W. Liu, S. Ning, G. Hua, Z.K. Zhao, et al. Oxidative coupling of kraft lignin mediated with hypervalent iodine reagent (III) for enhanced removal of dye in water. Ind. Crops Prod., (2022) 114234.
8. M. Rahmayanti, A.N. Syakina, I. Fatimah, and T. Sulistyaningsih. Green synthesis of magnetite nanoparticles using peel extract of jengkol (Archidendron pauciflorum) for methylene blue adsorption from aqueous media. Chem. Phys. Lett., (2022) 139834.
9. R.M. Cornell and U. Schwertmann. The iron oxides: structure, properties, reactions, occurrence and uses. Germany and USA: Weinheim and New York (VCH Verlagsgeseiischaft mbH), (1996).
10. Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B. Khairudin, S.E. Mohamad, et al. Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res. Lett., (2016) 276.
11. H. Rasoulzadeh, A. Mohseni-Bandpei, M. Hosseini, and M. Safari. Mechanistic investigation of ciproflfloxacin recovery by magnetite– imprinted chitosan nanocomposite: isotherm, kinetic, thermodynamic and reusability studies. Int. J. Biol. Macromol., (2019) 712–721.
12. A. Sebastian, A. Nangia, and M.N.V. Prasad. Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: relevance in amelioration of metal stress in rice. J. Hazard. Mater., (2019) 261–271.
13. M. Rahmayanti, S.J. Santosa, and Sutarno. Sonochemical co-precipitation synthesis of gallic acid-modified magnetite. Adv. Mater. Res., (2015) 286-289.
14. M. Rahmayanti, S.J. Santosa, and Sutarno. Mechanisms of gold recovery from aqueous solutions using gallic acid-modified magnetite particles synthesized via reverse co-precipitation method. Int. J. Chemtech Res., 4 (2016) 446–452.
15. M. Rahmayanti, S.J. Santosa, and Sutarno. Modified humic acid from peat soils with magnetite (HA-Fe3O4) by using sonochemical technology for gold recovery. Jurnal Bahan Alam Terbarukan, 2 (2020) 81–87.
16. F. Azadia, A. Karimi-Jashnia, and M.M. Zerafat. Green synthesis and optimization of nano-magnetite using Persicaria bistorta root extract and its application for rosewater distillation wastewater treatment. Ecotoxicol. Environ. Saf., (2018) 467–475.
17. A. V. Ramesh, Dharmasoth Rama Devi, Satish Mohan Botsa, and K. Basavaiah. Facile green synthesis of Fe3O4 nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue. J. Asian Ceram. Soc., 2 (2018) 145-155.
18. Mahnaz Mahdavi, Farideh Namvar, Mansor Bin Ahmad, and Rosfarizan Mohamad. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) Aqueous Extract. Molecules, 5 (2013) 5954-5964.
19. H. Luo, S. Zhanga, X. Li, X. Liu, Q. Xu, J. Liu, at al. Z. Tannic acid modifified Fe3O4 core–shell nanoparticles for adsorption of Pb2+ and Hg2+, J. Taiwan Inst. Chem. Eng., (2017) 1–8.
20. Tayyebeh Madrakian, Abbas Afkhami, and Mazaher Ahmadi. Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples. Spectrochim. Acta A Mol., (2012) 102–109.
21. M. Rahmayanti, I. Nurhikmah, and F. Larasati, F. Isolation, characterization and application of humin from Sumatran peat soils as adsorbent for naphtol blue black and indigosol blue dyes. Molekul, 1 (2021) 67–74.
22. S.K. Lagergren. About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, (1898) 1?39.
23. YS Ho, and G. McKay. Pseudo-second order model for sorption processes. Process Biochem., 5 (1999), 451?465.
24. M. Allaoui, M. Berradi, M., J. Bensalah, H. Es-sahbany, H., O. Dagdag, and S. Ibn Ahmed, S. Study of the adsorption of nickel ions on the sea shells of Mehdia: kinetic and ther modynamic study and mathematical modelling of experimental data. Materialsttoday: Proc., 8 (2021) 7494-7500.
25. Rayane de Oliveira Zonato, Bianca Ramos Estevam, Isadora Dias Perez, Valquíria Aparecida dos Santos Ribeiro, and Rosane Freire Boina. Eggshell as an adsorbent for removing dyes and metallic ions in aqueous solutions. CLCE, (2022) 100023.
26. José Helber VINCO, Amilton Barbosa BOTELHO JUNIOR, Heitor Augusto DUARTE, Denise Crocce Romano ESPINOSA, and Jorge Alberto Soares TENÓRIO. Kinetic modeling of adsorption of vanadium and iron from acid solution through ion exchange resins. Trans. Nonferrous Met. Soc. China, 7 (2022) 2438?2450.
27. M. El-Kammah, E. Elkhatib, S. Gouveia, C. Cameselle, and E. Aboukila. Enhanced removal of indigo carmine dye from textile effluent using green cost-efficient nanomaterial: adsorption, kinetics, thermodynamics and mechanisms. Sustain. Chem. Pharm., (2022), 100753.
28. N. Tekin, S.E. Karatay, G. Donmez. Optimization studies about efficient biobutanol production from industrial tea waste by Clostridium beijerinckii. Fuel, 331 (2023), 125763.
29. D. Ramutshatsha-Makhwedzha, A. Mavhungu, M. L. Moropeng, R. Mbaya. Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater Heliyon. 8 (2022) e09930.
30. H. Li, V.L. Budarin , J.H. Clark, M. North, X. Wu. Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons®: Mechanism and porosity dependence. J. Hazard. Mater.. 436 (2022), 129174.
31. C.C. Souza, L.Z.M. Souza, M. Y?lmaz, M.A. Oliveira, A.C.S. Bezerra, E.F. Silva, M.R. Dumont, A.R.T. Machado, Activated carbon of Coriandrum sativum for adsorption of methylene blue: Equilibrium and kinetic modeling. Cleaner Materials. 3 (2022), 100052.
32. N. Ahmad, F. Suryani Arsyad, I. Royani, A. Lesbani, Adsorption of methylene blue on magnetite humic acid: kinetic, isotherm, thermodynamic, and regeneration studies, Results in Chemistry, (2022).