A review of biomaterial as an adsorbent: From the bibliometric literature review, the definition of dyes and adsorbent, the adsorption phenomena and isotherm models, factors affecting the adsorption process, to the use of typha species waste as adsorbent

Main Article Content

Abdoulaye Demba N'diaye
Mohamed Sid' Ahmed Kankou
Belkheir Hammouti
Asep Bayu Dani Nandiyanto
Dwi Fitria Al Husaeni

Abstract

This paper presents a review of adsorption isotherms of some dyes from aqueous solutions by biomaterial. In this paper, we reported Typha waste as a model of biomaterial classified as a low-cost adsorbent. The paper also briefly discusses about the literature information from the definition of dyes and adsorbents, bibliometric analysis, adsorption phenomena, adsorption isotherm models, and factors affecting the adsorption, to the use of Typha species waste as a low-cost adsorbent. The operational parameters factors are explained in terms of pH, adsorbent dosage, contact time, and initial dye concentration that will affect the process of removing textile dye. The solution of pH turns out to be the most important condition in the adsorption process for anionic dye, a low pH value are preferable in contrast to cationic dye where the suitable pH value is high. For the adsorbent dose, the adsorption capacity increase along with the increment of adsorbent dosage due to the increase of the
available amount of adsorption site. The contact time between the adsorbent and dye affects the efficiency of dye removal where a strong attraction force will shorten the time. As for the effect of dye initial concentration, increasing the initial concentration enhances the increment of adsorbent surface area to adsorb dyes. Several isotherm models are described. The Langmuir model is frequently used to evaluate the adsorption capacity of the Typha species waste as adsorbents. This review paper suggested that the accuracy level obtained from adsorption processes is greatly dependent on the successful modeling of adsorption isotherms. Typha biomaterial wastes can be considered as the new useful low-cost natural adsorbents for dye clean-up  operations in aquatic systems.

Downloads

Download data is not yet available.

Article Details

How to Cite
N’diaye, A. D., Kankou, M. S. A., Hammouti, B., Nandiyanto, A. B. D., & Al Husaeni, D. F. (2022). A review of biomaterial as an adsorbent: From the bibliometric literature review, the definition of dyes and adsorbent, the adsorption phenomena and isotherm models, factors affecting the adsorption process, to the use of typha species waste as adsorbent. Communications in Science and Technology, 7(2), 140-153. https://doi.org/10.21924/cst.7.2.2022.977
Section
Articles

References

1. Akartasse, N.; Azzaoui, K.; Mejdoubi, E.; Hammouti, B.; Elansari, L.L.; Abou-Salama, M.; Aaddouz, M.; Sabbahi, R.; Rhazi, L.; and Siaj, M. Environmental-friendly adsorbent composite based on hydroxyapatite/hydroxypropyl methyl-cellulose for removal of cationic dyes from an aqueous solution, Polymers, 14 (2022) 2147.
2. Eren, E.; and Afsin, B. Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated sepiolite surfaces, Dyes Pigm., 73 (2007) 162-167.
3. Mishra, G.; and Tripathy, M. A critical review of the treatment for decolorization of dye wastewater, Colourage, 40 (1993) 35-38.
4. Ghosh, D.; and Bhattacharyya, K.G. Adsorption of methylene blue on kaolinite, Appl. Clay Sci., 20 (2002) 295-300.
5. Tan, I.A.W.; Ahmad, A.L.; and Hameed, B.H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater., 154 (2008) 337-346.
6. Tan, I.; Ahmad, A.; and Hameed, B. Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies, Desalination, 225 (2008) 13-28.
7. Gupta, V.K.; Mittal, A.; Krishnan, L.; and Gajbe, V. Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash, Sep. Purif. Technol., 40 (2004) 87-96.
8. Kumar, K.V.; Sivanesan, S.; and Ramamurthi, V. Adsorption of malachite green onto Pithophora sp., a fresh water algae: Equilibrium and kinetic modelling, Process Biochem., 40 (2005) 2865-2872.
9. Srivastava, S.; Sinha, R.; and Roy, D. Toxicological effects of malachite green, Aquat. Toxicol., 66 (2004) 319-329.
10. Tabak, A.; Eren, E.; Afsin, B.; and Caglar, B. Determination of adsorptive properties of a Turkish Sepiolite for removal of Reactive Blue 15 anionic dye from aqueous solutions, J. Hazard. Mater., 161 (2009) 1087-1094.
11. Attia, A.A.; Rashwan, W.E.; and Khedr, S.A. Capacity of activated carbon in the removal of acid dyes subsequent to its thermal treatment, Dyes Pigm., 69 (2006) 128-136.
12. Munagapati, V.S.; and Kim, D.-S. Adsorption of anionic azo dye Congo Red from aqueous solution by Cationic Modified Orange Peel Powder, J. Mol. Liq., 220 (2016) 540-548.
13. Waheed, A.; Mansha, M.; Kazi, I.W.; and Ullah, N. Synthesis of a novel 3, 5-diacrylamidobenzoic acid based hyper-cross-linked resin for the efficient adsorption of Congo Red and Rhodamine B, J. Hazard. Mater., 369 (2019) 528-538.
14. Chen, C.-H.; Chang, C.-F.; Ho, C.-H.; Tsai, T.-L.; and Liu, S.-M. Biodegradation of crystal violet by a Shewanella sp. NTOU1, Chemosphere, 72 (2008) 1712-1720.
15. Miandad, R.; Kumar, R.; Barakat, M.A.; Basheer, C.; Aburiazaiza, A.S.; Nizami, A.S.; and Rehan, M. Untapped conversion of plastic waste char into carbon-metal LDOs for the adsorption of congo red, J. Colloid Interface Sci., 511 (2018) 402-410.
16. Song, W.; Liu, Y.; Qian, L.; Niu, L.; Xiao, L.; Hou, Y.; Wang, Y.; and Fan, X. Hyperbranched polymeric ionic liquid with imidazolium backbones for highly efficient removal of anionic dyes, J. Chem. Eng., 287 (2016) 482-491.
17. Khelassi-Sefaoui, A.; Khechekhouche, A.; Daouadji, M.Z.-D.; and Idrici, H. Physico-chemical investigation of wastewater from the Sebdou-Tlemcen textile complex North-West Algeria, Indones. J. Sci. Technol., 6 (2021) 361-370.
18. Métivier-Pignon, H.; Faur-Brasquet, C.; and Le Cloirec, P. Adsorption of dyes onto activated carbon cloths: approach of adsorption mechanisms and coupling of ACC with ultrafiltration to treat coloured wastewaters, Sep. Purif. Technol., 31 (2003) 3-11.
19. Sivarajasekar, N.; and Baskar, R. Agriculture waste biomass valorisation for cationic dyes sequestration: a concise review, J. Chem. Pharm. Res., 7 (2015) 737-748.
20. Tran, H.N.; You, S.-J.; Nguyen, T.V.; and Chao, H.-P. Insight into the adsorption mechanism of cationic dye onto biosorbents derived from agricultural wastes, Chem. Eng. Commun., 204 (2017) 1020-1036.
21. Kadirvelu, K.; Kavipriya, M.; Karthika, C.; Radhika, M.; Vennilamani, N.; and Pattabhi, S. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions, Bioresour. Technol., 87 (2003) 129-132.
22. Al Abbad, E.; and Alakhras, F. Removal of dye acid red 1 from aqueous solutions using chitosan-iso-vanillin sorbent material, Indones. J. Sci. Technol., 5 (2020) 352-365.
23. Al-Samak, M.S.; and Jassim, J.M. Dye-doped Fe3O4 nanoparticles for magnetically controlling random laser parameters at visible wavelengths: Literature review and experiment, Indones. J. Sci. Technol., 7 (2022) 497-510.
24. Khuluk, R.H.; and Rahmat, A. Removal of methylene blue by adsorption onto activated carbon from coconut shell (Cocous Nucifera L.), Indonesian Journal of Science & Technology, 4 (2019) 229-240.
25. Prihastuti, H.; and Kurniawan, T. Conversion of Indonesian coal fly ash into zeolites for ammonium adsorption, AJSEE in Materials, 1 (2022) 75-84.
26. Ragadhita, R.; and Nandiyanto, A.B.D. Curcumin adsorption on zinc imidazole framework-8 particles: Isotherm adsorption using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models, J. Eng. Sci. Technol., 17 (2022) 1078-1089.
27. Obinna, E.M. Biosorption/precipitation of heavy metals by partially degraded keratin/soluble peptides/amino acids by-products of degradation of human hair by keratinase isolated from alcaligenes Faecalis Strain AIR10, AJSEE in Materials, 2 (2023) 9-28.
28. Abd El-Latif, M.M.; El-Kady, M.F.; Ibrahim, A.M.; and Ossman, M.E. Alginate/polyvinyl alcohol-kaolin composite for removal of methylene blue from aqueous solution in a batch stirred tank reactor, Am. J. Sci., 6 (2010) 280-292.
29. Anliker, R.; Dürig, G.; Steinle, D.; and Moriconi, E.J. List of colorants to be classified as toxic, Journal of the Society of Dyers and Colourists, 104 (1988) 223-225.
30. Frid, P.; Anisimov, S.V.; and Popovic, N. Congo red and protein aggregation in neurodegenerative diseases, Brain Res. Rev., 53 (2007) 135-160.
31. Oz, M.; Lorke, D.E.; Hasan, M.; and Petroianu, G.A. Cellular and molecular actions of methylene blue in the nervous system, Med. Res. Rev., 31 (2011) 93-117.
32. Ahmed, A.; Usman, M.; Yu, B.; Ding, X.; Peng, Q.; Shen, Y.; and Cong, H. Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate, J. Photochem. Photobiol. B, Biol., 202 (2020) 111682.
33. Dileepkumar, V.; Surya, P.; Pratapkumar, C.; Viswanatha, R.; Ravikumar, C.; Kumar, M.A.; Muralidhara, H.; Al-Akraa, I.M.; Mohammad, A.M.; and Chen, Z. NaFeS2 as a new photocatalytic material for the degradation of industrial dyes, J. Environ. Chem. Eng., 8 (2020) 104005.
34. Lum, P.; Foo, K.; Zakaria, N.; and Palaniandy, P. Ash based nanocomposites for photocatalytic degradation of textile dye pollutants: a review, Mater. Chem. Phys., 241 (2020) 122405.
35. Bhagwat, U.O.; Wu, J.J.; Asiri, A.M.; and Anandan, S. Sonochemical Synthesis of Mg-TiO2 nanoparticles for persistent Congo red dye degradation, J. Photochem. Photobiol. A, 346 (2017) 559-569.
36. Mosleh, S.; Rahimi, M.R.; Ghaedi, M.; Dashtian, K.; and Hajati, S. Sonochemical-assisted synthesis of CuO/Cu2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization, Ultrason Sonochem., 40 (2018) 601-610.
37. Potle, V.D.; Shirsath, S.R.; Bhanvase, B.A.; and Saharan, V.K. Sonochemical preparation of ternary rGO-ZnO-TiO2 nanocomposite photocatalyst for efficient degradation of crystal violet dye, Optik, 208 (2020) 164555.
38. Kaith, B.S.; Dhiman, J.; and Bhatia, J.K. Preparation and application of grafted Holarrhena antidycentrica fiber as cation exchanger for adsorption of dye from aqueous solution, J. Environ. Chem. Eng., 3 (2015) 1038-1046.
39. Lin, R.-Y.; Chen, B.-S.; Chen, G.-L.; Wu, J.-Y.; Chiu, H.-C.; and Suen, S.-Y. Preparation of porous PMMA/Na+–montmorillonite cation-exchange membranes for cationic dye adsorption, J. Membr. Sci., 326 (2009) 117-129.
40. White, W.; Sanborn, C.D.; Fabian, D.M.; and Ardo, S. Conversion of visible light into ionic power using photoacid-dye-sensitized bipolar ion-exchange membranes, Joule, 2 (2018) 94-109.
41. Gui, L.; Peng, J.; Li, P.; Peng, R.; Yu, P.; and Luo, Y. Electrochemical degradation of dye on TiO2 nanotube array constructed anode, Chemosphere, 235 (2019) 1189-1196.
42. Santos, D.H.; Duarte, J.L.; Tavares, M.G.; Tavares, M.G.; Friedrich, L.C.; Meili, L.; Pimentel, W.R.; Tonholo, J.; and Zanta, C.L. Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA® electrodes, Chem. Eng. Process.: Process Intensif., 153 (2020) 107940.
43. Shetti, N.P.; Malode, S.J.; Malladi, R.S.; Nargund, S.L.; Shukla, S.S.; and Aminabhavi, T.M. Electrochemical detection and degradation of textile dye Congo red at graphene oxide modified electrode, Microchem. J., 146 (2019) 387-392.
44. Chacón, J.M.; Leal, M.T.; Sánchez, M.; and Bandala, E.R. Solar photocatalytic degradation of azo-dyes by photo-Fenton process, Dyes Pigm., 69 (2006) 144-150.
45. Doumic, L.I.; Soares, P.A.; Ayude, M.A.; Cassanello, M.; Boaventura, R.A.; and Vilar, V.J. Enhancement of a solar photo-Fenton reaction by using ferrioxalate complexes for the treatment of a synthetic cotton-textile dyeing wastewater, J. Chem. Eng., 277 (2015) 86-96.
46. Salazar, R.; Gallardo-Arriaza, J.; Vidal, J.; Rivera-Vera, C.; Toledo-Neira, C.; Sandoval, M.A.; Cornejo-Ponce, L.; and Thiam, A. Treatment of industrial textile wastewater by the solar photoelectro-Fenton process: influence of solar radiation and applied current, Sol., 190 (2019) 82-91.
47. Liu, Y.; Li, K.; Xu, W.; Du, B.; Wei, Q.; Liu, B.; and Wei, D. GO/PEDOT: NaPSS modified cathode as heterogeneous electro-Fenton pretreatment and subsequently aerobic granular sludge biological degradation for dye wastewater treatment, Sci. Total Environ., 700 (2020) 134536.
48. Punzi, M.; Anbalagan, A.; Börner, R.A.; Svensson, B.-M.; Jonstrup, M.; and Mattiasson, B. Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: evaluation of toxicity and microbial community structure, J. Chem. Eng., 270 (2015) 290-299.
49. Fiandini, M.; Ragadhita, R.; Nandiyanto, A.B.D.; and Nugraha, W.C. Adsorption characteristics of submicron porous carbon particles prepared from rice husk, J. Eng. Sci. Technol., 15 (2020) 022-031.
50. Maryanti, R.; Nandiyanto, A.B.D.; Manullang, T.I.B.; Hufad, A.; and Sunardi, S. Adsorption of dye on carbon microparticles: physicochemical properties during adsorption, adsorption isotherm and education for students with special needs, Sains Malays., 49 (2020) 2949-2960.
51. Nandiyanto, A.B.D. Isotherm adsorption of carbon microparticles prepared from pumpkin (Cucurbita maxima) seeds using two-parameter monolayer adsorption models and equations, Mor. J. Chem., 8 (2020) 2745-2761.
52. Nandiyanto, A.B.D.; Arinalhaq, Z.F.; Rahmadianti, S.; Dewi, M.W.; Rizky, Y.P.C.; Maulidina, A.; Anggraeni, S.; Bilad, M.R.; and Yunas, J. Curcumin adsorption on carbon microparticles: Synthesis from soursop (AnnonaMuricata L.) peel waste, adsorption Isotherms and thermodynamic and adsorption mechanism, Int. J. Nanoelectron. Mater. ., 13 (2020) 173-192.
53. Nandiyanto, A.B.D.; Girsang, G.C.S.; Maryanti, R.; Ragadhita, R.; Anggraeni, S.; Fauzi, F.M.; Sakinah, P.; Astuti, A.P.; Usdiyana, D.; and Fiandini, M. Isotherm adsorption characteristics of carbon microparticles prepared from pineapple peel waste, Commun. Sci. Technol. 5 (2020) 31-39.
54. Nandiyanto, A.B.D.; Girsang, G.C.S.; and Rizkia, R.S. Isotherm adsorption characteristics of 63-um calcium carbonate particles prepared from eggshells waste, J. Eng. Sci. Technol., 17 (2022) 3203-3210.
55. Nandiyanto, A.B.D.; Hofifah, S.N.; and Maryanti, R. Identification of misconceptions in learning the concept of the adsorption process, J. Eng. Sci. Technol. 17 (2022) 0964-0984.
56. Nandiyanto, A.B.D.; Hofifah, S.N.; Anggraeni, S.; and Kurniwan, T. Isotherm adsorption of 40-?m zeolite particles for treatment of dye wastewater, J. Eng. Sci. Technol., 17 (2022) 1265-1275.
57. Nandiyanto, A.B.D.; Hofifah, S.N.; Girsang, G.C.S.; Trianadewi, D.; Ainisyifa, Z.N.; Siswanto, A.; Putri, S.R.; Anggraeni, S.; Maryanti, R.; and Muslimin, Z. Distance learning innovation in teaching chemistry in vocational school using the concept of isotherm adsorption of carbon microparticles, J. Tech. Educ. Train., 14 (2022) 14-26.
58. Nandiyanto, A.B.D.; Hofifah, S.N.; Inayah, H.T.; Putri, S.R.; Apriliani, S.S.; Anggraeni, S.; Usdiyana, D.; and Rahmat, A. Adsorption isotherm of carbon microparticles prepared from pumpkin (Cucurbita maxima) seeds for dye removal, Iraqi J. Sci., (2021) 1404-1414.
59. Nandiyanto, A.B.D.; Maryanti, R.; Fiandini, M.; Ragadhita, R.; Usdiyana, D.; Anggraeni, S.; Arwa, W.R.; and Al-Obaidi, A.S.M. Synthesis of carbon microparticles from red dragon fruit (Hylocereus undatus) peel waste and their adsorption isotherm characteristics, Molekul, 15 (2020) 199-209.
60. Nandiyanto, A.B.D.; Nur, N.; and Taufik, R.S.R. Investigation of adsorption performance of calcium carbonate microparticles prepared from eggshells waste, J. Eng. Sci. Technol., 17 (2022) 1934-1943.
61. Nandiyanto, A.B.D.; Putra, Z.A.; Andika, R.; Bilad, M.R.; Kurniawan, T.; Zulhijah, R.; and Hamidah, I. Porous activated carbon particles from rice straw waste and their adsorption properties, J. Eng. Sci. Technol., 12 (2017) 1-11.
62. Nandiyanto, A.B.D.; Putri, S.R.; Anggraeni, S.; and Kurniawan, T. Isotherm adsorption of 3000-µm natural zeolite, J. Eng. Sci. Technol., 17 (2022) 2447-2460.
63. Nandiyanto, A.B.D.; Ragadhita, R.; and Yunas, J. Adsorption isotherm of densed monoclinic tungsten trioxide nanoparticles, Sains Malays., 49 (2020) 2881-2890.
64. Putri, S.R.; Hofifah, S.N.; Girsang, G.C.S.; and Nandiyanto, A.B.D. How to identify misconception using certainty of response index (cri): a study case of mathematical chemistry subject by experimental demonstration of adsorption, IJOMS, 2 (2021) 143-158.
65. Ragadhita, R.; and Nandiyanto, A.B.D. How to calculate adsorption isotherms of particles using two-parameter monolayer adsorption models and equations, Indones. J. Sci. Technol., 6 (2021) 205-234.
66. Ragadhita, R.; Nandiyanto, A.B.D.; Nugraha, W.C.; and Mudzakir, A. Adsorption isotherm of mesopore-free submicron silica particles from rice husk, J. Eng. Sci. Technol., 14 (2019) 2052-2062.
67. García-Montaño, J.; Pérez-Estrada, L.; Oller, I.; Maldonado, M.I.; Torrades, F.; and Peral, J. Pilot plant scale reactive dyes degradation by solar photo-Fenton and biological processes, J. Photochem. Photobiol. A, 195 (2008) 205-214.
68. Lodha, B.; and Chaudhari, S. Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions, J. Hazard. Mater., 148 (2007) 459-466.
69. Afroze, S.; and Sen, T.K. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents, Wat. Air And Soil Poll., 229 (2018) 1-50.
70. Shen, C.; Pan, Y.; Wu, D.; Liu, Y.; Ma, C.; Li, F.; Ma, H.; and Zhang, Y. A crosslinking-induced precipitation process for the simultaneous removal of poly (vinyl alcohol) and reactive dye: the importance of covalent bond forming and magnesium coagulation, J. Chem. Eng., 374 (2019) 904-913.
71. Dawood, S.; and Sen, T. Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents, CHEM PROCESS ENG-INZ, 1 (2014) 1-11.
72. Joseph, J.; Radhakrishnan, R.C.; Johnson, J.K.; Joy, S.P.; and Thomas, J. Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate, Mater. Chem. Phys., 242 (2020) 122488.
73. Marin, N.M.; Pascu, L.F.; Demba, A.; Nita-Lazar, M.; Badea, I.A.; and Aboul-Enein, H. Removal of the Acid Orange 10 by ion exchange and microbiological methods, Int. J. Environ. Sci. Technol., 16 (2019) 6357-6366.
74. Collivignarelli, M.C.; Abbà, A.; Miino, M.C.; and Damiani, S. Treatments for color removal from wastewater: State of the art, J. Environ. Manage., 236 (2019) 727-745.
75. Moosavi, S.; Lai, C.W.; Gan, S.; Zamiri, G.; Akbarzadeh Pivehzhani, O.; and Johan, M.R. Application of efficient magnetic particles and activated carbon for dye removal from wastewater, ACS omega, 5 (2020) 20684-20697.
76. Simi, A.; and Azeeza, V. Removal of methylene blue dye using low cost adsorbent, Asian J. Chem., 22 (2010) 4371-4376.
77. Al-Zoubi, H.; Ibrahim, K.A.; and Abu-Sbeih, K.A. Removal of heavy metals from wastewater by economical polymeric collectors using dissolved air flotation process, J. Water Process. Eng., 8 (2015) 19-27.
78. El-Hosiny, F.; Abdeldayem AbdelKhalek, M.; Selim, K.; and Osama, I. A designed electro-flotation cell for dye removal from wastewater, J. Appl. Res. Ind. Eng, 4 (2017) 133-147.
79. Hendaoui, K.; Trabelsi-Ayadi, M.; and Ayari, F. Optimization and mechanisms analysis of indigo dye removal using continuous electrocoagulation, Chin. J. Chem. Eng., 29 (2021) 242-252.
80. Patel, H. Review on solvent desorption study from exhausted adsorbent, J. Saudi Chem. Soc., 25 (2021) 101302.
81. Yeow, P.K.; Wong, S.W.; and Hadibarata, T. Removal of azo and anthraquinone dye by plant biomass as adsorbent—A review, Biointerface Res. Appl. Chem., 11 (2021) 8218-8232.
82. Aguayo-Villarreal, I.; Bonilla-Petriciolet, A.; and Muñiz-Valencia, R. Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions, J. Mol. Liq., 230 (2017) 686-695.
83. Ahmad, M.A.; Eusoff, M.A.; Oladoye, P.O.; Adegoke, K.A.; and Bello, O.S. Statistical optimization of Remazol Brilliant Blue R dye adsorption onto activated carbon prepared from pomegranate fruit peel, Chem. Data Collect., 28 (2020) 100426.
84. Alaqarbeh, M.; Al-hadidi, L.; Hammouti, B.; and Bouachrine, M. Water pollutions: sources and human health impact. A mini-review, Mor. J. Chem., 10 (2022) 2891-2900.
85. Bazzi, I.; El Mouaden, K.; Chaouay, A.; Addi, A.A.; Hamdani, M.; El Issami, S.; Hilali, M.; Hammouti, B.; Abbiche, K.; and Salghi, R. Monitoring heavy metal contamination levels and microbiological pollution in seawater of Agadir coastal zones, Indones. J. Sci. Technol., 5 (2020) 463-469.
86. Elmouaden, K.; Chaouay, A.; Oukhrib, R.; Jbara, O.; Jodeh, S.; Salghi, R.; Hamed, O.; and Hilali, M. Microbiological pollution of marine environment of the coastal of Agadir. Impact on the corrosion of mild steel, Int. J. Electrochem. Sci. 10 (2015) 7955-7965.
87. Hameed, B.H.; Salman, J.M.; and Ahmad, A.L. Adsorption isotherm and kinetic modeling of 2, 4-D pesticide on activated carbon derived from date stones, J. Hazard. Mater., 163 (2009) 121-126.
88. Li, Z.; Hanafy, H.; Zhang, L.; Sellaoui, L.; Netto, M.S.; Oliveira, M.L.; Seliem, M.K.; Dotto, G.L.; Bonilla-Petriciolet, A.; and Li, Q. Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations, J. Chem. Eng., 388 (2020) 124263.
89. Xiao, W.; Garba, Z.N.; Sun, S.; Lawan, I.; Wang, L.; Lin, M.; and Yuan, Z. Preparation and evaluation of an effective activated carbon from white sugar for the adsorption of rhodamine B dye, J. Clean. Prod., 253 (2020) 119989.
90. Rafatullah, M.; Sulaiman, O.; Hashim, R.; and Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177 (2010) 70-80.
91. Annadurai, G.; Juang, R.-S.; and Lee, D.-J. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions, J. Hazard. Mater., 92 (2002) 263-274.
92. Ho, Y.-S.; Chiang, T.-H.; and Hsueh, Y.-M. Removal of basic dye from aqueous solution using tree fern as a biosorbent, Process Biochem., 40 (2005) 119-124.
93. Wang, X.S.; Liu, X.; Wen, L.; Zhou, Y.; Jiang, Y.; and Li, Z. Comparison of basic dye crystal violet removal from aqueous solution by low-cost biosorbents, Sep. Sci. Technol., 43 (2008) 3712-3731.
94. Anshar, A.M.; Taba, P.; and Raya, I. Kinetic and thermodynamics studies the adsorption of phenol on activated carbon from rice husk activated by ZnCl2, Indones. J. Sci. Technol., 1 (2016) 47-60.
95. Mohadi, R.; Palapa, N.R.; Taher, T.; Siregar, P.M.S.B.N.; Juleanti, N.; Wijaya, A.; and Lesbani, A. Removal of Cr (VI) from aqueous solution by biochar derived from rice husk, Commun. Sci. Technol. 6 (2021) 11-17.
96. Al Rmalli, S.W.; Dahmani, A.A.; Abuein, M.M.; and Gleza, A.A. Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.), J. Hazard. Mater., 152 (2008) 955-959.
97. Saeed, A.; Sharif, M.; and Iqbal, M. Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption, J. Hazard. Mater., 179 (2010) 564-572.
98. Belala, Z.; Jeguirim, M.; Belhachemi, M.; Addoun, F.; and Trouvé, G. Biosorption of basic dye from aqueous solutions by date stones and palm-trees waste: Kinetic, equilibrium and thermodynamic studies, Desalination, 271 (2011) 80-87.
99. Witek-Krowiak, A.; Szafran, R.G.; and Modelski, S. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent, Desalination, 265 (2011) 126-134.
100. Han, X.; Wang, W.; and Ma, X. Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf, J. Chem. Eng., 171 (2011) 1-8.
101. Kyzas, G.Z.; Lazaridis, N.K.; and Mitropoulos, A.C. Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: Equilibrium, reuse and thermodynamic approach, J. Chem. Eng., 189 (2012) 148-159.
102. Han, X.; Niu, X.; and Ma, X. Adsorption characteristics of methylene blue on poplar leaf in batch mode: Equilibrium, kinetics and thermodynamics, Korean J. Chem. Eng., 29 (2012) 494-502.
103. Bendaha, H.; Elmsellem, H.; Aouniti, A.; Mimouni, M.; Chetouani, A.; and Hammouti, B. Investigation of the corrosion-resistant properties of citrus aurantium essential oil in 1 M HCl, J. Mater. Sci., 52 (2016) 123-131.
104. Jodeh, S.; Basalat, N.; Abu Obaid, A.; Bouknana, D.; Hammouti, B.; Hadda, T.B.; Jodeh, W.; and Warad, I. Adsorption of some organic phenolic compounds using activated carbon from cypress products, J. Chem. Pharm. Res., 6 (2014) 713-723.
105. Guerrero-Coronilla, I.; Morales-Barrera, L.; and Cristiani-Urbina, E. Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves, J. Environ. Manage., 152 (2015) 99-108.
106. Al Husaeni, D.F.; and Nandiyanto, A.B.D. Bibliometric using Vosviewer with Publish or Perish (using google scholar data): From step-by-step processing for users to the practical examples in the analysis of digital learning articles in pre and post Covid-19 pandemic, AJSEE, 2(2022) 19-46.
107. Nandiyanto, A.B.D.; Al Husaeni, D.N.; Ragadhita, R.; Fiandini, M.; Al Husaeni, D.F.; and Aziz, M. Resin matrix composition on the performance of brake pads made from durian seeds: From computational bibliometric literature analysis to experiment, Automotive Experiences, 5 (2022) 328-342.
108. Nandiyanto, A.B.D.; Biddinika, M.K.; and Triawan, F. How bibliographic dataset portrays decreasing number of scientific publication from Indonesia, Indones. J. Sci. Technol., 5 (2020) 154-175.
109. Nandiyanto, A.B.D.; Ragadhita, R.; Fiandini, M.; Al Husaeni, D.F.; Al Husaeni, D.N.; and Fadhillah, F. Domestic waste (eggshells and banana peels particles) as sustainable and renewable resources for improving resin-based brakepad performance: Bibliometric literature review, techno-economic analysis, dual-sized reinforcing experiments, to comparison, Commun. Sci. Technol. 7 (2022) 50-61.
110. Nandiyanto, A.B.D.; Al Husaeni, D.F.; Ragadhita, R.; Fiandini, M.; Rizky, K.M.; and Novia, D. The effect of mangosteen peel compositions as reinforcement components on resin-based brake pad performance with computational bibliometric mapping analysis, Mater. Phys. Mech., 50 (2022) 33-57.
111. Gunawan, B.; Ratmono, B.M.; Abdullah, A.G.; Sadida, N.; and Kaprisma, H. Research mapping in the use of technology for fake news detection: Bibliometric analysis from 2011 to 2021, Indones. J. Sci. Technol., 7 (2022) 471-496.
112. Hamidah, I.; Sriyono, S.; and Hudha, M.N. A Bibliometric analysis of Covid-19 research using VOSviewer, Indones. J. Sci. Technol. (2020) 34-41.
113. Mudzakir, A.; Rizky, K.M.; Munawaroh, H.S.H.; and Puspitasari, D. Oil palm empty fruit bunch waste pretreatment with benzotriazolium-based ionic liquids for cellulose conversion to glucose: Experiments with computational bibliometric analysis, Indones. J. Sci. Technol., 7 (2022) 291-310.
114. Ramadhan, D.F.; Fabian, A.M.; and Saputra, H.M. Dental suction aerosol: Bibliometric analysis, AJSEE, 2 (2022) 295-302.
115. Setiyo, M.; Yuvenda, D.; and Samuel, O.D. The Concise latest report on the advantages and disadvantages of pure biodiesel (B100) on engine performance: Literature review and bibliometric analysis, Indones. J. Sci. Technol., 6 (2021) 469-490.
116. Soegoto, H.; Soegoto, E.S.; Luckyardi, S.; and Rafdhi, A.A. A bibliometric analysis of management bioenergy research using VOSviewer application, Indones. J. Sci. Technol., 7 (2022) 89-104.
117. Malek, A.; and Farooq, S. Comparison of isotherm models for hydrocarbon adsorption on activated carbon, AIChE Journal, 42 (1996) 3191-3201.
118. Kumar, K.V.; and Sivanesan, S. Comparison of linear and non-linear method in estimating the sorption isotherm parameters for safranin onto activated carbon, J. Hazard. Mater., 123 (2005) 288-292.
119. Larkin, D.J.; Lishawa, S.C.; and Tuchman, N.C. Appropriation of nitrogen by the invasive cattail Typha× glauca, Aquat. Bot., 100 (2012) 62-66.
120. Osland, M.J.; González, E.; and Richardson, C.J. Restoring diversity after cattail expansion: disturbance, resilience, and seasonality in a tropical dry wetland, Ecol. Appl., 21 (2011) 715-728.
121. N'diaye, A.; Boudokhane, C.; Elkory, M.; Kankou, M.; and Dhaouadi, H. Methyl parathion pesticide removal from aqueous solution using Senegal River Typha Australis, Water Supply, 18 (2018) 1545-1553.
122. Önal, Y.; Akmil-Ba?ar, C.; Eren, D.; Sar?c?-Özdemir, Ç.; and Depci, T. Adsorption kinetics of malachite green onto activated carbon prepared from Tunçbilek lignite, J. Hazard. Mater., 128 (2006) 150-157.
123. Özcan, A.; Ömero?lu, Ç.; Erdo?an, Y.; and Özcan, A.S. Modification of bentonite with a cationic surfactant: An adsorption study of textile dye Reactive Blue 19, J. Hazard. Mater., 140 (2007) 173-179.
124. Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; and Idris, A. Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review, Desalination, 280 (2011) 1-13.
125. N'diaye, A.D.; Ali, Y.A.E.H.; Bollahi, M.A.; Stitou, M.; Kankou, M.; and Fahmi, D. Adsorption of methylene blue from aqueous solution using Senegal river Typha australis, Mediterr. J. Chem., 10 (2020) 22-32.
126. Boumaza, S.; Yenounne, A.; Hachi, W.; Kaouah, F.; Bouhamidi, Y.; and Trari, M. Application of Typha angustifolia (L.) dead leaves waste as biomaterial for the removal of cationic dye from aqueous solution, Int. J. Environ. Res., 12 (2018) 561-573.
127. Muthulakshmi, T.; Thangam, M.A.M.; and Kannan, C. Environmental toxicity assessment on organic dyes using Typha angustata, J. Environ. Nanotechnol., 7 (2018) 37-44.
128. Ansari, R.; and Mosayebzadeh, Z. Removal of basic dye methylene blue from aqueous solutions using sawdust and sawdust coated with polypyrrole, J. Iran. Chem. Soc, 7 (2010) 339-350.
129. Guechi, E.-K.; and Hamdaoui, O. Cattail leaves as a novel biosorbent for the removal of malachite green from liquid phase: Data analysis by non-linear technique, Desalination Water Treat., 51 (2013) 3371-3380.
130. Orozco, R.S.; Martínez-Juan, M.; García-Sánchez, J.J.; and Ureña-Núñez, F. Removal of methylene blue from aqueous solution using Typha stems and leaves, BioResources, 13 (2018) 1696-1710.
131. N’diaye, A.D.; Ali, Y.A.E.H.; Abdallahi, O.E.M.; Bollahi, M.A.; Stitou, M.; Kankou, M.; and Fahmi, D. Sorption of malachite green from aqueous solution using Typha australis leaves as a low cost sorbent, J. Environ. Treat. Tech., 8 (2020) 1023-1028.
132. Ali, Y.A.E.H.; N'diaye, A.D.; Fahmi, D.; Kankou, M.S.A.; and Stitou, M. Adsorption of congo red from aqueous solution using Typha australis leaves as a low cost adsorbent, J. Environ. Treat. Tech., 9 (2021) 534-539.
133. El Amri, A.; Bensalah, J.; Idrissi, A.; Lamya, K.; Ouass, A.; Bouzakraoui, S.; Zarrouk, A.; and Lebkiri, A. Adsorption of a cationic dye (Methylene bleu) by Typha Latifolia: equilibrium, kinetic, thermodynamic and DFT calculations, Chem. Data Collect., 38 (2022) 100834.
134. El Amri, A.; Kadiri, L.; Hsissou, R.; Lebkiri, A.; Wardighi, Z.; and Lebkiri, A. Investigation of Typha Latifolia (TL) as potential biosorbent for removal of the methyl orange anionic dye in the aqueous solution. Kinetic and DFT approaches, J. Mol. Struct., 1272 (2023) 134098.
135. Santhi, M.; Kumar, P.E.; and Sathya, M. Batch adsorption and isotherm studies for the removal of malachite green and reactive red 4 dyes by using AC-Mno2-NC prepared from typha angustat l, R Rasayan J. Chem., 11 (2018) 1423-1432.
136. Ashraf, M.A.; Hussain, M.; Mahmood, K.; Wajid, A.; Yusof, M.; Alias, Y.; and Yusoff, I. Removal of acid yellow-17 dye from aqueous solution using eco-friendly biosorbent, Desalination Water Treat., 51 (2013) 4530-4545.
137. Saif Ur Rehman, M.; and Han, J.-I. Biosorption of methylene blue from aqueous solutions by Typha angustata phytomass, Int. J. Environ. Sci. Technol., 10 (2013) 865-870.
138. Khattri, S.D.; and Singh, M.K. Colour removal from dye wastewater using sugar cane dust as an adsorbent, Adsorp. Sci. Technol., 17 (1999) 269-282.
139. Namasivayam, C.; Prabha, D.; and Kumutha, M. Removal of direct red and acid brilliant blue by adsorption on to banana pith, Bioresour. Technol., 64 (1998) 77-79.
140. Khattri, S.; and Singh, M. Colour removal from synthetic dye wastewater using a bioadsorbent, Wat. Air, and Soil Poll. 120 (2000) 283-294.
141. Namasivayam, C.; Kumar, M.D.; Selvi, K.; Begum, R.A.; Vanathi, T.; and Yamuna, R. ‘Waste’coir pith—a potential biomass for the treatment of dyeing wastewaters, Biomass and Bioenergy, 21 (2001) 477-483.
142. Batzias, F.A.; and Sidiras, D.K. Dye adsorption by calcium chloride treated beech sawdust in batch and fixed-bed systems, J. Hazard. Mater., 114 (2004) 167-174.
143. Soni, M.; Sharma, A.K.; Srivastava, J.K.; and Yadav, J. Adsorptive removal of methylene blue dye from an aqueous solution using water hyacinth root powder as a low cost adsorbent, IJCA, 3 (2012) 338-345.
144. Kumar, P.S.; Ramalingam, S.; Senthamarai, C.; Niranjanaa, M.; Vijayalakshmi, P.; and Sivanesan, S. Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions, Desalination, 261 (2010) 52-60.
145. Renita, A.A.; Kumar, P.S.; and Jabasingh, S.A. Redemption of acid fuchsin dye from wastewater using de-oiled biomass: kinetics and isotherm analysis, Bioresour. Technol. Reports, 7 (2019) 100300.
146. Reichenberg, D. Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange, J. Am. Chem. Soc., 75 (1953) 589-597.
147. Boyd, G.E.; Adamson, A.W.; and Myers Jr, L.S. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics, J. Am. Chem. Soc., 69 (1947) 2836-2848.