Investigating the antimicrobial activity of silver nanoparticles with varying charges green-synthesized from Tabebuia rosea flower

Main Article Content

Trung Dien Nguyen
Thao Phuc-Nguyen Nguyen
Nhung Thi-Tuyet Thai
Yen Hai Hoang
Gia Thi-Ngoc Trinh

Abstract

The integration of nanotechnology and biomedicine has driven a significant interest in silver nanoparticles due to their unique properties. This study presents a novel approach by combining Tabebuia rosea flower extract and chitosan to manipulate the surface charges of synthesized silver nanoparticles. These biosynthesized nanoparticles, presenting negative, neutral, and positive charges, were thoroughly analyzed by means of a number of techniques including Ultraviolet-visible spectroscopy, X-ray diffraction, transmission electron microscopy, and Fourier-transform infrared spectroscopy. By incorporating chitosan, the zeta potential of the green-synthesized nanomaterials was modified, shifting from negative to positive. The resultant silver nanoparticles showed the zeta potentials of –24.8 mV for negatively charged particles, +22.9 mV for positively charged ones, and neutrality at approximately 0.04% chitosan. Meanwhile, the particle sizes for the negative, neutral, and positive nanomaterials were 19.7, 15.8, and 14.2 nm, respectively. The antimicrobial and anticancer activities of these biosynthesized nanoparticles were evaluated against gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, and Salmonella enterica), gram-positive bacteria (Bacillus subtilis, Lactobacillus fermentum, and Staphylococcus aureus), and cancer cell lines (A549, Hep-G2, KB, and MCF-7). These results highlight the crucial role of surface stabilizers, particle size, and charge in determining the biomedical potential of nanosilver particles. Notably, the biosynthesized silver nanoparticles exhibited a number of promising antimicrobial and anticancer properties, emphasizing their potential for biomedical applications.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nguyen, T. D., Nguyen, T. P.-N., Thai, N. T.-T., Hoang, Y. H., & Trinh, G. T.-N. (2024). Investigating the antimicrobial activity of silver nanoparticles with varying charges green-synthesized from Tabebuia rosea flower. Communications in Science and Technology, 9(2), 398-410. https://doi.org/10.21924/cst.9.2.2024.1521
Section
Articles

References

1. M. Abass Sofi, S. Sunitha, M. Ashaq Sofi, S.K. Khadheer Pasha, D. Choi, An overview of antimicrobial and anticancer potential of silver nanoparticles, J. King Saud Univ. Sci. 34 (2022) 101791

2. N. Durán, M. Durán, M.B. de Jesus, A.B. Seabra, W.J. Fávaro, G. Nakazato, Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity, Nanomed. Nanotechnol. Biol. Med. 12 (2016) 789-799

3. T. Lan Pham, V. Dat Doan, Q. Le Dang, T. Anh Nguyen, T.L. Huong Nguyen, T.D. Thuy Tran, T.P. Lan Nguyen, T.K. Anh Vo, T. Huy Nguyen, D. Lam Tran, Stable biogenic silver nanoparticles from Syzygium nervosum bud extract for enhanced catalytic, antibacterial and antifungal properties, RSC Adv. 13 (2023) 20994-21007

4. N.S. Alharbi, N.S. Alsubhi, Green synthesis and anticancer activity of silver nanoparticles prepared using fruit extract of Azadirachta indica, J. Radiat. Res. Appl. Sci. 15 (2022) 335-345

5. S. Jebril, R. Khanfir Ben Jenana, C. Dridi, Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo, Mater. Chem. Phys. 248 (2020) 122898

6. T. Silva, L.R. Pokhrel, B. Dubey, T.M. Tolaymat, K.J. Maier, X. Liu, Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity, Sci. Total Environ. 468-469 (2014) 968-976

7. A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, H. Sharghi, The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study, J. Nanomater. 2015 (2015) 1-8

8. S.M. Rakib-Uz-Zaman, E. Hoque Apu, M.N. Muntasir, S.A. Mowna, M.G. Khanom, S.S. Jahan, N. Akter, M.A. R. Khan, N.S. Shuborna, S.M. Shams, K. Khan, Biosynthesis of silver nanoparticles from Cymbopogon citratus leaf extract and evaluation of their antimicrobial properties, Challenges 13 (2022) 18

9. N.P.U. Nguyen, N.T. Dang, L. Doan, T.T.H. Nguyen, Synthesis of silver nanoparticles: From conventional to ‘modern’ methods-A review, Processes 11 (2023) 2617

10. A. Sharonova, K. Loza, M. Surmeneva, R. Surmenev, O. Prymak, M. Epple, Synthesis of positively and negatively charged silver nanoparticles and their deposition on the surface of titanium, IOP Conf. Ser. Mater. Sci. Eng. 116 (2016) 012009

11. K. Ssekatawa, D.K. Byarugaba, C.D. Kato, E.M. Wampande, F. Ejobi, J.L. Nakavuma, M. Maaza, J. Sackey, E. Nxumalo, J.B. Kirabira, Green strategy-based synthesis of silver nanoparticles for antibacterial applications, Front. Nanotechnol. 3 (2021) 697303

12. L.R. Pokhrel, Z.L. Jacobs, D. Dikin, S.M. Akula, Five nanometer size highly positive silver nanoparticles are bactericidal targeting cell wall and adherent fimbriae expression, Sci. Rep. 12 (2022) 6729

13. A. Gholami, K. Ghezelbash, B. Asheghi, A. Abbaszadegan, A. Amini, An in Vitro study on the antibacterial effects of chlorhexidine-loaded positively charged silver nanoparticles on Enterococcus faecalis, J. Nanomater. 2022 (2022) 6405772

14. E. Matras, A. Gorczyca, S.W. Przemieniecki, M. O?wieja, Surface properties-dependent antifungal activity of silver nanoparticles, Sci. Rep. 12 (2022) 18046

15. M.A. Polinarski, A.L.B. Beal, F.E.B. Silva, J. Bernardi?Wenzel, G.R.M. Burin, G.I.B. de Muniz, H.J. Alves, New perspectives of using chitosan, silver, and chitosan-silver nanoparticles against multidrug?resistant bacteria, Part. Part. Syst. Charact. 38 (2021) 2100009

16. M. Collado-González, V. Fernández Espín, M.G. Montalbán, R. Pamies, J.G. Hernández Cifre, F.G. Díaz Baños, G. Víllora, J. García de la Torre, Aggregation behaviour of gold nanoparticles in presence of chitosan, J. Nanoparticle Res. 17 (2015) 268

17. D. Van Phu, L.A. Quoc, N.N. Duy, N.T.K. Lan, B.D. Du, L.Q. Luan, N.Q. Hien, Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers, Nanoscale Res. Lett. 9 (2014) 162

18. L.O. Cinteza, C. Scomoroscenco, S.N. Voicu, C.L. Nistor, S.G. Nitu, B. Trica, M.L. Jecu, C. Petcu, Chitosan-stabilized Ag nanoparticles with superior biocompatibility and their synergistic antibacterial effect in mixtures with essential oils, Nanomaterials 8 (2018) 826

19. S. Jadoun, R. Arif, N.K. Jangid, R.K. Meena, Green synthesis of nanoparticles using plant extracts: A review, Environ. Chem. Lett. 19 (2021) 355-374

20. F. Jiménez-González, J. Vélez-Gómez, J. Melchor-Moncada, L. Veloza, J. Sepúlveda-Arias, Antioxidant, anti-inflammatory, and antiproliferative activity of extracts obtained from Tabebuia Rosea (Bertol.) DC, Pharmacogn. Mag. 14 (2018) 25

21. S. Sirigeri, M. Sv, B. Sl, Phytochemical analysis and biological activity studies of methanolic extract of Tabebuia rosea seeds, J. Med. Plants Stud. 9 (2021) 41-46

22. E. Sreelekha, B. George, A. Shyam, N. Sajina, B. Mathew, A comparative study on the synthesis, characterization, and antioxidant activity of green and chemically synthesized silver nanoparticles, BioNanoScience 11 (2021) 489-496

23. A. Chafidz, S. Rusdi, I. Nurrahman, A.D. Haryanto Kalista Wibowo, A. Kusmayadi, D.T. Hartanto, Synthesis of silver (Ag) nano/micro-particles via green process using Andrographis paniculata leaf extract as a bio-reducing agent, Commun. Sci. Technol. 9 (2024) 199-206

24. A. Chafidz, A.R. Afandi, B.M.S. Rosa, J., P. Hidayat, H. Junaedi, Production of silver nanoparticles via green method using banana raja peel extract as a reducing agent, Commun. Sci. Technol. 5 (2020) 112-118

25. M. Khan, M. Khan, S.F. Adil, M.N. Tahir, W. Tremel, H.Z. Alkhathlan, A. Al-Warthan, M.R. Siddiqui, Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract, Int. J. Nanomedicine 8 (2013) 1507-1516

26. J.L. López-Miranda, M. Vázquez, N. Fletes, R. Esparza, G. Rosas, Biosynthesis of silver nanoparticles using a Tamarix gallica leaf extract and their antibacterial activity, Mater. Lett. 176 (2016) 285-289

27. A. Antony, M. Farid, Effect of temperatures on polyphenols during extraction, Appl. Sci. 12 (2022) 2107

28. S. Raghunath, S. Budaraju, S.M.T. Gharibzahedi, M. Koubaa, S. Roohinejad, K. Mallikarjunan, Processing technologies for the extraction of value-added bioactive compounds from tea, Food Eng. Rev. 15 (2023) 276-308

29. Q.W. Zhang, L.G. Lin, W.C. Ye, Techniques for extraction and isolation of natural products: A comprehensive review, Chin. Med. 13 (2018) 20

30. A. Sankhla, R. Sharma, R.S. Yadav, D. Kashyap, S.L. Kothari, S. Kachhwaha, Biosynthesis and characterization of cadmium sulfide nanoparticles-An emphasis of zeta potential behavior due to capping, Mater. Chem. Phys. 170 (2016) 44-51

31. T. Kim, J. Shin, B. An, Adsorption characteristics for Cu(II) and phosphate in chitosan beads under single and mixed conditions, Polymers 15 (2023) 421

32. M.M.H. Khalil, E.H. Ismail, K.Z. El-Baghdady, D. Mohamed, Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity, Arab. J. Chem. 7 (2014) 1131-1139

33. B.S. Avinash, V.S. Chaturmukha, H.S. Jayanna, C.S. Naveen, M.P. Rajeeva, B.M. Harish, S. Suresh, A.R. Lamani, Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial, AIP Conf. Proc. 1728 (2016) 020426

34. Z. Nate, M.J. Moloto, P.K. Mubiayi, P.N. Sibiya, Green synthesis of chitosan capped silver nanoparticles and their antimicrobial activity, MRS Adv. 3 (2018) 2505-2517

35. S. Skoglund, J. Hedberg, E. Yunda, A. Godymchuk, E. Blomberg, I. Odnevall Wallinder, Difficulties and flaws in performing accurate determinations of zeta potentials of metal nanoparticles in complex solutions-Four case studies, Plos One 12 (2017) 0181735

36. D. Arif, M.B.K. Niazi, N. Ul-Haq, M.N. Anwar, E. Hashmi, Preparation of antibacterial cotton fabric using chitosan-silver nanoparticles, Fibers Polym. 16 (2015) 1519-1526

37. M. Krysa, M. Szyma?ska-Chargot, A. Zdunek, FT-IR and FT-Raman fingerprints of flavonoids-A review, Food Chem. 393 (2022) 133430

38. C. Branca, G. D'Angelo, C. Crupi, K. Khouzami, S. Rifici, G. Ruello, U. Wanderlingh, Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films, Polymer 99 (2016) 614-622

39. S. Kumari, P. Rath, A. Sri Hari Kumar, T.N. Tiwari, Extraction and characterization of chitin and chitosan from fishery waste by chemical method, Environ. Technol. Innov. 3 (2015) 77-85

40. Y.N. Slavin, J. Asnis, U.O. Hafeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity, J. Nanobiotechnology 15 (2017) 65

41. R.P. Illanes Tormena, E.V. Rosa, B.F. Oliveira Mota, J.A. Chaker, C.W. Fagg, D.O. Freire, P.M. Martins, I.C. Rodrigues da Silva, M.H. Sousa, Evaluation of the antimicrobial activity of silver nanoparticles obtained by microwave-assisted green synthesis using Handroanthus impetiginosus (Mart. ex DC.) Mattos underbark extract, RSC Adv. 10 (2020) 20676-20681

42. A. Menichetti, A. Mavridi-Printezi, D. Mordini, M. Montalti, Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles, J. Funct. Biomater. 14 (2023) 244

43. M. López-Heras, I.G. Theodorou, B.F. Leo, M.P. Ryan, A.E. Porter, Towards understanding the antibacterial activity of Ag nanoparticles: electron microscopy in the analysis of the materials-biology interface in the lung, Environ. Sci. Nano 2 (2015) 312-326

44. E.M.P. dos Santos, C.C.B. Martins, J.V. de Oliveira Santos, W.R.C. da Silva, S.B.C. Silva, M.A. Pelagio-Flores, A. Galembeck, I.M.F. Cavalcanti, Silver nanoparticles-chitosan composites activity against resistant bacteria: tolerance and biofilm inhibition, J. Nanoparticle Res. 23 (2021) 196

45. Z. Li, J. Ma, J. Ruan, X. Zhuang, Using positively charged magnetic nanoparticles to capture bacteria at ultralow concentration, Nanoscale Res. Lett. 14 (2019) 195

46. N. Oulahal, P. Degraeve, Phenolic-rich plant extracts with antimicrobial activity: An alternative to food preservatives and biocides?, Front. microbiol. 12 (2022) 753518

47. J.A. Aboyewa, N.R.S. Sibuyi, M. Meyer, O.O. Oguntibeju, Green synthesis of metallic nanoparticles using some selected medicinal plants from Southern Africa and their biological applications, Plants 10 (2021) 1929

48. T.C. Dakal, A. Kumar, R.S. Majumdar, V. Yadav, Mechanistic basis of antimicrobial actions of silver nanoparticles, Front. Microbiol. 7 (2016) 01831

49. Y.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity, J. Nanobiotechnol. 15 (2017) 65

50. A. Gholami, M.B. Ghoshoon, P. Ghafari, Y. Ghasemi, The effect of different positively charged silver nanoparticles against bacteria, fungi and mammalian cell line, Trends Pharm. Sci. 3 (2017) 135-142

51. S. Shinde, V. Folliero, A. Chianese, C. Zannella, A. De Filippis, L. Rosati, M. Prisco, A. Falanga, A. Mali, M. Galdiero, M. Galdiero, G. Franci, Synthesis of chitosan-coated silver nanoparticle bioconjugates and their antimicrobial activity against multidrug-resistant bacteria, Appl. Sci. 11 (2021) 9340