Investigating the antimicrobial activity of silver nanoparticles with varying charges green-synthesized from Tabebuia rosea flower
Main Article Content
Abstract
The integration of nanotechnology and biomedicine has driven a significant interest in silver nanoparticles due to their unique properties. This study presents a novel approach by combining Tabebuia rosea flower extract and chitosan to manipulate the surface charges of synthesized silver nanoparticles. These biosynthesized nanoparticles, presenting negative, neutral, and positive charges, were thoroughly analyzed by means of a number of techniques including Ultraviolet-visible spectroscopy, X-ray diffraction, transmission electron microscopy, and Fourier-transform infrared spectroscopy. By incorporating chitosan, the zeta potential of the green-synthesized nanomaterials was modified, shifting from negative to positive. The resultant silver nanoparticles showed the zeta potentials of –24.8 mV for negatively charged particles, +22.9 mV for positively charged ones, and neutrality at approximately 0.04% chitosan. Meanwhile, the particle sizes for the negative, neutral, and positive nanomaterials were 19.7, 15.8, and 14.2 nm, respectively. The antimicrobial and anticancer activities of these biosynthesized nanoparticles were evaluated against gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, and Salmonella enterica), gram-positive bacteria (Bacillus subtilis, Lactobacillus fermentum, and Staphylococcus aureus), and cancer cell lines (A549, Hep-G2, KB, and MCF-7). These results highlight the crucial role of surface stabilizers, particle size, and charge in determining the biomedical potential of nanosilver particles. Notably, the biosynthesized silver nanoparticles exhibited a number of promising antimicrobial and anticancer properties, emphasizing their potential for biomedical applications.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. N. Durán, M. Durán, M.B. de Jesus, A.B. Seabra, W.J. Fávaro, G. Nakazato, Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity, Nanomed. Nanotechnol. Biol. Med. 12 (2016) 789-799
3. T. Lan Pham, V. Dat Doan, Q. Le Dang, T. Anh Nguyen, T.L. Huong Nguyen, T.D. Thuy Tran, T.P. Lan Nguyen, T.K. Anh Vo, T. Huy Nguyen, D. Lam Tran, Stable biogenic silver nanoparticles from Syzygium nervosum bud extract for enhanced catalytic, antibacterial and antifungal properties, RSC Adv. 13 (2023) 20994-21007
4. N.S. Alharbi, N.S. Alsubhi, Green synthesis and anticancer activity of silver nanoparticles prepared using fruit extract of Azadirachta indica, J. Radiat. Res. Appl. Sci. 15 (2022) 335-345
5. S. Jebril, R. Khanfir Ben Jenana, C. Dridi, Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo, Mater. Chem. Phys. 248 (2020) 122898
6. T. Silva, L.R. Pokhrel, B. Dubey, T.M. Tolaymat, K.J. Maier, X. Liu, Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity, Sci. Total Environ. 468-469 (2014) 968-976
7. A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, H. Sharghi, The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study, J. Nanomater. 2015 (2015) 1-8
8. S.M. Rakib-Uz-Zaman, E. Hoque Apu, M.N. Muntasir, S.A. Mowna, M.G. Khanom, S.S. Jahan, N. Akter, M.A. R. Khan, N.S. Shuborna, S.M. Shams, K. Khan, Biosynthesis of silver nanoparticles from Cymbopogon citratus leaf extract and evaluation of their antimicrobial properties, Challenges 13 (2022) 18
9. N.P.U. Nguyen, N.T. Dang, L. Doan, T.T.H. Nguyen, Synthesis of silver nanoparticles: From conventional to ‘modern’ methods-A review, Processes 11 (2023) 2617
10. A. Sharonova, K. Loza, M. Surmeneva, R. Surmenev, O. Prymak, M. Epple, Synthesis of positively and negatively charged silver nanoparticles and their deposition on the surface of titanium, IOP Conf. Ser. Mater. Sci. Eng. 116 (2016) 012009
11. K. Ssekatawa, D.K. Byarugaba, C.D. Kato, E.M. Wampande, F. Ejobi, J.L. Nakavuma, M. Maaza, J. Sackey, E. Nxumalo, J.B. Kirabira, Green strategy-based synthesis of silver nanoparticles for antibacterial applications, Front. Nanotechnol. 3 (2021) 697303
12. L.R. Pokhrel, Z.L. Jacobs, D. Dikin, S.M. Akula, Five nanometer size highly positive silver nanoparticles are bactericidal targeting cell wall and adherent fimbriae expression, Sci. Rep. 12 (2022) 6729
13. A. Gholami, K. Ghezelbash, B. Asheghi, A. Abbaszadegan, A. Amini, An in Vitro study on the antibacterial effects of chlorhexidine-loaded positively charged silver nanoparticles on Enterococcus faecalis, J. Nanomater. 2022 (2022) 6405772
14. E. Matras, A. Gorczyca, S.W. Przemieniecki, M. O?wieja, Surface properties-dependent antifungal activity of silver nanoparticles, Sci. Rep. 12 (2022) 18046
15. M.A. Polinarski, A.L.B. Beal, F.E.B. Silva, J. Bernardi?Wenzel, G.R.M. Burin, G.I.B. de Muniz, H.J. Alves, New perspectives of using chitosan, silver, and chitosan-silver nanoparticles against multidrug?resistant bacteria, Part. Part. Syst. Charact. 38 (2021) 2100009
16. M. Collado-González, V. Fernández Espín, M.G. Montalbán, R. Pamies, J.G. Hernández Cifre, F.G. Díaz Baños, G. Víllora, J. García de la Torre, Aggregation behaviour of gold nanoparticles in presence of chitosan, J. Nanoparticle Res. 17 (2015) 268
17. D. Van Phu, L.A. Quoc, N.N. Duy, N.T.K. Lan, B.D. Du, L.Q. Luan, N.Q. Hien, Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers, Nanoscale Res. Lett. 9 (2014) 162
18. L.O. Cinteza, C. Scomoroscenco, S.N. Voicu, C.L. Nistor, S.G. Nitu, B. Trica, M.L. Jecu, C. Petcu, Chitosan-stabilized Ag nanoparticles with superior biocompatibility and their synergistic antibacterial effect in mixtures with essential oils, Nanomaterials 8 (2018) 826
19. S. Jadoun, R. Arif, N.K. Jangid, R.K. Meena, Green synthesis of nanoparticles using plant extracts: A review, Environ. Chem. Lett. 19 (2021) 355-374
20. F. Jiménez-González, J. Vélez-Gómez, J. Melchor-Moncada, L. Veloza, J. Sepúlveda-Arias, Antioxidant, anti-inflammatory, and antiproliferative activity of extracts obtained from Tabebuia Rosea (Bertol.) DC, Pharmacogn. Mag. 14 (2018) 25
21. S. Sirigeri, M. Sv, B. Sl, Phytochemical analysis and biological activity studies of methanolic extract of Tabebuia rosea seeds, J. Med. Plants Stud. 9 (2021) 41-46
22. E. Sreelekha, B. George, A. Shyam, N. Sajina, B. Mathew, A comparative study on the synthesis, characterization, and antioxidant activity of green and chemically synthesized silver nanoparticles, BioNanoScience 11 (2021) 489-496
23. A. Chafidz, S. Rusdi, I. Nurrahman, A.D. Haryanto Kalista Wibowo, A. Kusmayadi, D.T. Hartanto, Synthesis of silver (Ag) nano/micro-particles via green process using Andrographis paniculata leaf extract as a bio-reducing agent, Commun. Sci. Technol. 9 (2024) 199-206
24. A. Chafidz, A.R. Afandi, B.M.S. Rosa, J., P. Hidayat, H. Junaedi, Production of silver nanoparticles via green method using banana raja peel extract as a reducing agent, Commun. Sci. Technol. 5 (2020) 112-118
25. M. Khan, M. Khan, S.F. Adil, M.N. Tahir, W. Tremel, H.Z. Alkhathlan, A. Al-Warthan, M.R. Siddiqui, Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract, Int. J. Nanomedicine 8 (2013) 1507-1516
26. J.L. López-Miranda, M. Vázquez, N. Fletes, R. Esparza, G. Rosas, Biosynthesis of silver nanoparticles using a Tamarix gallica leaf extract and their antibacterial activity, Mater. Lett. 176 (2016) 285-289
27. A. Antony, M. Farid, Effect of temperatures on polyphenols during extraction, Appl. Sci. 12 (2022) 2107
28. S. Raghunath, S. Budaraju, S.M.T. Gharibzahedi, M. Koubaa, S. Roohinejad, K. Mallikarjunan, Processing technologies for the extraction of value-added bioactive compounds from tea, Food Eng. Rev. 15 (2023) 276-308
29. Q.W. Zhang, L.G. Lin, W.C. Ye, Techniques for extraction and isolation of natural products: A comprehensive review, Chin. Med. 13 (2018) 20
30. A. Sankhla, R. Sharma, R.S. Yadav, D. Kashyap, S.L. Kothari, S. Kachhwaha, Biosynthesis and characterization of cadmium sulfide nanoparticles-An emphasis of zeta potential behavior due to capping, Mater. Chem. Phys. 170 (2016) 44-51
31. T. Kim, J. Shin, B. An, Adsorption characteristics for Cu(II) and phosphate in chitosan beads under single and mixed conditions, Polymers 15 (2023) 421
32. M.M.H. Khalil, E.H. Ismail, K.Z. El-Baghdady, D. Mohamed, Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity, Arab. J. Chem. 7 (2014) 1131-1139
33. B.S. Avinash, V.S. Chaturmukha, H.S. Jayanna, C.S. Naveen, M.P. Rajeeva, B.M. Harish, S. Suresh, A.R. Lamani, Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial, AIP Conf. Proc. 1728 (2016) 020426
34. Z. Nate, M.J. Moloto, P.K. Mubiayi, P.N. Sibiya, Green synthesis of chitosan capped silver nanoparticles and their antimicrobial activity, MRS Adv. 3 (2018) 2505-2517
35. S. Skoglund, J. Hedberg, E. Yunda, A. Godymchuk, E. Blomberg, I. Odnevall Wallinder, Difficulties and flaws in performing accurate determinations of zeta potentials of metal nanoparticles in complex solutions-Four case studies, Plos One 12 (2017) 0181735
36. D. Arif, M.B.K. Niazi, N. Ul-Haq, M.N. Anwar, E. Hashmi, Preparation of antibacterial cotton fabric using chitosan-silver nanoparticles, Fibers Polym. 16 (2015) 1519-1526
37. M. Krysa, M. Szyma?ska-Chargot, A. Zdunek, FT-IR and FT-Raman fingerprints of flavonoids-A review, Food Chem. 393 (2022) 133430
38. C. Branca, G. D'Angelo, C. Crupi, K. Khouzami, S. Rifici, G. Ruello, U. Wanderlingh, Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films, Polymer 99 (2016) 614-622
39. S. Kumari, P. Rath, A. Sri Hari Kumar, T.N. Tiwari, Extraction and characterization of chitin and chitosan from fishery waste by chemical method, Environ. Technol. Innov. 3 (2015) 77-85
40. Y.N. Slavin, J. Asnis, U.O. Hafeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity, J. Nanobiotechnology 15 (2017) 65
41. R.P. Illanes Tormena, E.V. Rosa, B.F. Oliveira Mota, J.A. Chaker, C.W. Fagg, D.O. Freire, P.M. Martins, I.C. Rodrigues da Silva, M.H. Sousa, Evaluation of the antimicrobial activity of silver nanoparticles obtained by microwave-assisted green synthesis using Handroanthus impetiginosus (Mart. ex DC.) Mattos underbark extract, RSC Adv. 10 (2020) 20676-20681
42. A. Menichetti, A. Mavridi-Printezi, D. Mordini, M. Montalti, Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles, J. Funct. Biomater. 14 (2023) 244
43. M. López-Heras, I.G. Theodorou, B.F. Leo, M.P. Ryan, A.E. Porter, Towards understanding the antibacterial activity of Ag nanoparticles: electron microscopy in the analysis of the materials-biology interface in the lung, Environ. Sci. Nano 2 (2015) 312-326
44. E.M.P. dos Santos, C.C.B. Martins, J.V. de Oliveira Santos, W.R.C. da Silva, S.B.C. Silva, M.A. Pelagio-Flores, A. Galembeck, I.M.F. Cavalcanti, Silver nanoparticles-chitosan composites activity against resistant bacteria: tolerance and biofilm inhibition, J. Nanoparticle Res. 23 (2021) 196
45. Z. Li, J. Ma, J. Ruan, X. Zhuang, Using positively charged magnetic nanoparticles to capture bacteria at ultralow concentration, Nanoscale Res. Lett. 14 (2019) 195
46. N. Oulahal, P. Degraeve, Phenolic-rich plant extracts with antimicrobial activity: An alternative to food preservatives and biocides?, Front. microbiol. 12 (2022) 753518
47. J.A. Aboyewa, N.R.S. Sibuyi, M. Meyer, O.O. Oguntibeju, Green synthesis of metallic nanoparticles using some selected medicinal plants from Southern Africa and their biological applications, Plants 10 (2021) 1929
48. T.C. Dakal, A. Kumar, R.S. Majumdar, V. Yadav, Mechanistic basis of antimicrobial actions of silver nanoparticles, Front. Microbiol. 7 (2016) 01831
49. Y.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity, J. Nanobiotechnol. 15 (2017) 65
50. A. Gholami, M.B. Ghoshoon, P. Ghafari, Y. Ghasemi, The effect of different positively charged silver nanoparticles against bacteria, fungi and mammalian cell line, Trends Pharm. Sci. 3 (2017) 135-142
51. S. Shinde, V. Folliero, A. Chianese, C. Zannella, A. De Filippis, L. Rosati, M. Prisco, A. Falanga, A. Mali, M. Galdiero, M. Galdiero, G. Franci, Synthesis of chitosan-coated silver nanoparticle bioconjugates and their antimicrobial activity against multidrug-resistant bacteria, Appl. Sci. 11 (2021) 9340