High-performance eco-friendly Ni Cu/bamboo activated carbon catalysts for oxidative desulfurization of high-concentration DBT
Main Article Content
Abstract
This study investigated how the metal impregnation method affects the oxidative desulfurization (ODS) of dibenzothiophene (DBT) using H2O2 over Ni–Cu catalysts supported on bamboo-derived activated carbon. Catalysts with 1% and 2% Ni–Cu were prepared via simultaneous impregnation, while the effect of sequence was evaluated by comparing simultaneous and sequential impregnation (2%Ni-2%Cu/AC and 2%Cu-2%Ni/AC). The 2%Ni-2%Cu/AC catalyst was identified as the best catalyst, with a surface area of 802.36 m2/g, average pore diameter of 2.4761 nm, and total acidity of 3.1239 mmol/g. This catalyst achieved the highest DBT reduction of 90.81% under optimal conditions (0.2 g catalyst weight, 60 minutes, 40 °C, and 0.66 mL H2O2), confirming that the sequential impregnation route significantly enhances catalytic performance. In conclusion, the impregnation sequence in designing highly efficient desulfurization catalysts is important due to spray impregnation resulting in higher surface area, acidity, and catalytic activity compared to the simultaneous impregnation method.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. A. V. Akopyan, R.A. Mnatsakanyan, E.A. Eseva, D.A. Davtyan, P.D. Polikarpova, M.O. Lukashov, et al., New Type of Catalyst for Efficient Aerobic Oxidative Desulfurization Based On Tungsten Carbide Synthesized by the Microwave Method, ACS Omega 7 (2022) 11788–11798. https://doi.org/10.1021/acsomega.1c06969.
3. A. Rajendran, T.Y. Cui, H.X. Fan, Z.F. Yang, J. Feng, and W.Y. Li, A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment, J. Mater. Chem. A 8 (2020) 2246–2285. https://doi.org/10.1039/c9ta12555h.
4. M. Ahmadian, and M. Anbia, Highly efficient oxidative desulfurization catalyzed by copper-based materials using hydrogen peroxide as oxidant, Fuel 324 (2022) 124471. https://doi.org/10.1016/j.fuel.2022.124471.
5. B.S. Ahmed, L.O. Hamasalih, K.H. Hama Aziz, K.M. Omer, and I. Shafiq, Oxidative Desulfurization of Real High-Sulfur Diesel Using Dicarboxylic Acid/H2O2 System, Processes 10 (2022). https://doi.org/10.3390/pr10112327.
6. Y. Chen, Q. Tian, Y. Tian, J. Cui, and G. Wang, Ultra-deep oxidative desulfurization of fuel with H2O2 catalyzed by mesoporous silica-supported molybdenum oxide modified by Ce, Appl. Sci. 11 (2021) 1–15. https://doi.org/10.3390/app11052018.
7. W. Trisunaryanti, S.D. Sumbogo, S.A. Novianti, D.A. Fatmawati, M. Ulfa, and Y.L. Nikmah, ZnO-activated carbon blended as a catalyst for oxidative desulfurization of dibenzothiophene, Bull. Chem. React. Eng. Catal. 16 (2021) 881–887. https://doi.org/10.9767/BCREC.16.4.11797.881-887.
8. S. Akbari Moghadam, G. Mazloom, A. Akbari, and F. Banisharif, Supported vanadium oxide catalyst over HY-zeolite-alumina composite fabricated by extrusion for oxidative desulfurization of dibenzothiophene, Mol. Catal. 532 (2022) 112731. https://doi.org/10.1016/j.mcat.2022.112731.
9. Y. Jia, G. Li, and G. Ning, Efficient oxidative desulfurization (ODS) of model fuel with H 2O2 catalyzed by MoO3/γ-Al 2O3 under mild and solvent free conditions, Fuel Process. Technol. 92 (2011) 106–111.
10. M. Ghahramaninezhad, and A. Ahmadpour, A new simple protocol for the synthesis of nanohybrid catalyst for oxidative desulfurization of dibenzothiophene, Environ. Sci. Pollut. Res. 27 (2020) 4104–4114.
11. J. He, Y. Wu, P. Wu, L. Lu, C. Deng, H. Ji, et al., Synergistic Catalysis of the PtCu Alloy on Ultrathin BN Nanosheets for Accelerated Oxidative Desulfurization, ACS Sustain. Chem. Eng. 8 (2020) 2032–2039.
12. A. Haruna, Z.M.A. Merican, and S.G. Musa, Recent advances in catalytic oxidative desulfurization of fuel oil – A review, J. Ind. Eng. Chem. 112 (2022) 20–36.
13. L. Chen, and Z.Y. Yuan, Design strategies of supported metal-based catalysts for efficient oxidative desulfurization of fuel, J. Ind. Eng. Chem.108 (2022) 1–14.
14. M. Yaseen, S. Khattak, S. Ullah, F. Subhan, W. Ahmad, M. Shakir, et al., Oxidative desulfurization of model and real petroleum distillates using Cu or Ni impregnated banana peels derived activated carbon–NaClO catalyst–oxidant system, Chem. Eng. Res. Des. 179 (2022) 107–118.
15. M. Elena Manríquez-Ramírez, M.T. Valdez, L. V. Castro, M.E. Flores, and E. Ortiz-Islas, Application of CeO2-V2O5 catalysts in the oxidative desulfurization of 4,6-dimethyl dibenzothiophene as a model reaction to remove sulfur from fuels, Mater. Res. Bull. 153 (2022) 111864.
16. B. Fareed, F. Sher, F. Zafar, I. Ziani, B. Wang, R. Fatima, et al., Advanced monometallic and bimetallic catalysts for energy efficient propylene production via propane dehydrogenation pathways–A review, Appl. Energy 397 (2025).
17. L. Wang, N. Zuo, Z. Wang, D. Xie, Q. Liu, S. Li, et al., Ultra-selectivede sulfurization of 4, 6-dimethyldibenzothiophene via carbon-sulfur bond cleavage with the bimetal single atom on N-rGO, J. Hazard. Mater. 399 (2020) 122803.
18. L. Marlinda, Rahmi, A. Aziz, A. Roesyadi, D.H. Prajitno, Y.W. Mirzayanti, et al., Cobalt-nickel supported on desilicated HZSM-5 for the conversion of Reutealis trisperma (blanco) airy shaw oil to liquid hydrocarbon products, Commun. Sci. Technol. 10 (2025) 87–97.
19. H.M. Kim, B.J. Kim, W.J. Jang, J.O. Shim, K.W. Jeon, H.S. Na, et al., Effect of support materials and Ni loading on catalytic performance for carbon dioxide reforming of coke oven gas, Int. J. Hydrogen Energy 44 (2019) 8233–8242.
20. E. Taer, L. Pratiwi, Apriwandi, W.S. Mustika, R. Taslim, and Agustino, Three-dimensional pore structure of activated carbon monolithic derived from hierarchically bamboo stem for supercapacitor application, Commun. Sci. Technol. 5 (2020) 22–30.
21. S.M.A. Mahanim, I. Wan Asma, J. Rafidah, E. Puad, and H. Shaharuddin, Production of activated carbon from industrial bamboo wastes, J. Trop. For. Sci. 23 (2011) 417–424.
22. W. Astuti, R.M. Ramadhan, and V.A. Octaviany, Synthesis of Activated Carbon from Petung Bamboo Stems (Dendrocalamus Asper) Using Microwave-Assisted Pyrolysis (MAP) Process for Biogas Storage, J. Bahan Alam Terbarukan 11 (2022) 58–67.
23. F. Visiamah, W. Trisunaryanti, and Triyono, Microwave-assisted coconut wood carbon-based catalyst impregnated by Ni and/or Pt for bio-jet fuel range hydrocarbons production from Calophyllum inophyllum L. oil using modified-microwave reactor, Case Stud. Chem. Environ. Eng. 9 (2024) 100722.
24. L. Romero-Castro, A.E. Galetti, M.S. Moreno, and M.N. Barroso, Nanostructured Ni–Co catalysts: Effect of impregnation sequence and complexing agent, Mater. Today Chem. 42 (2024) 102348.
25. N. Osakoo, R. Henkel, S. Loiha, F. Roessner, and J. Wittayakun, Comparison of PdCo/SBA-15 prepared by co-impregnation and sequential impregnation for Fischer-Tropsch synthesis, Catal. Commun. 66 (2015) 73–78.
26. I.S. Ismail, N.A. Rashidi, and S. Yusup, Production and characterization of bamboo-based activated carbon through single-step H3PO4 activation for CO2 capture, Environ. Sci. Pollut. Res. 29 (2022) 12434–12440.
27. Triyono, W. Trisunaryanti, J. Purbonegoro, and S.I. Aksanti, Effect of cobalt impregnation methods on Parangtritis sand towards catalysts activity in hydrocracking of degummed low-quality Ujung Kulon Malapari oil into biohydrocarbons, React. Kinet. Mech. Catal. (2023).
28. Q. Cai, Z. Fan, J. Chen, W. Guo, F. Ma, S. Sun, et al., Dissolving process of bamboo powder analyzed by FT-IR spectroscopy, J. Mol. Struct. 1171 (2018) 639–643.
29. A. Kamińska, J. Sreńscek-Nazzal, J. Serafin, P. Miądlicki, K. Kiełbasa, and A. Wróblewska, Biomass-based activated carbons produced by chemical activation with H3PO4 as catalysts for the transformation of α-pinene to high-added chemicals, Environ. Sci. Pollut. Res. 31 (2024) 40063–40082.
30. T.R. Brazil, M. Gonçalves, M.S.O. Junior, and M.C. Rezende, Sustainable process to produce activated carbon from Kraft lignin impregnated with H3PO4 using microwave pyrolysis, Biomass and Bioenergy 156 (2022) 106333.
31. G. Zeng, W. Li, S. Ci, J. Jia, and Z. Wen, Highly Dispersed NiO Nanoparticles Decorating graphene Nanosheets for Non-enzymatic Glucose Sensor and Biofuel Cell, Sci. Rep. 6 (2016) 1–8.
32. A. Chinthakuntla, K. Venkateswara Rao, C. Ashok, Kv. Rao, and C. Shilpa Chakra, STRUCTURAL ANALYSIS OF CuO NANOMATERIALS PREPARED BY NOVEL MICROWAVE ASSISTED METHOD, J. Atoms Mol. 4 (2014) 803–806.
33. P. López, G. Mondragón-Galicia, M.E. Espinosa-Pesqueira, D. Mendoza-Anaya, M.E. Fernández, A. Gómez-Cortés, et al., Hydrogen production from oxidative steam reforming of methanol: Effect of the Cu and Ni impregnation on ZrO 2 and their molecular simulation studies, Int. J. Hydrogen Energy 37 (2012) 9018–9027.
34. Z. Liang, G.P. Kovács, C. Gyuricza, and A. Neményi, Potential use of bamboo in the phytoremediation in of heavy metals: A review, Acta Agrar. Debreceniensis 2022 (2022) 91–97.
35. M.E.A. Montaño, L. Effting, C.L.B. Guedes, G.G.C. Arizaga, R.M. Giona, P.H.Y. Cordeiro, et al., Performance assessment of activated carbon thermally modified with iron in the desulfurization of biogas in a static batch system supported by headspace gas chromatography, J. Anal. Sci. Technol. 15 (2024).
36. I. Kurnia, S. Karnjanakom, I. Irkham, H. Haryono, Y.A. Situmorang, A. Indarto, et al., Enhanced adsorption capacity of activated carbon over thermal oxidation treatment for methylene blue removal: kinetics, equilibrium, thermodynamic, and reusability studies, RSC Adv. 13 (2022) 220–227.
37. E. Aryee, A.K. Dalai, and J. Adjaye, Synthesis and Characterization of NiMo Catalysts Supported on Fine Carbon Particles for Hydrotreating: Effects of Metal Loadings in Catalyst Formulation, Front. Chem. Eng. 3 (2021) 1–14.
38. R.S. Neisan, N.M.C. Saady, C. Bazan, S. Zendehboudi, and T.M. Albayati, Adsorption of copper from water using TiO2-modified activated carbon derived from orange peels and date seeds: Response surface methodology optimization, Heliyon 9 (2023) e21420.
39. T. Shoosri, P. Chotiwilaiwan, T. Rattanapornchaiwat, T. Teerawatananond, T. Miyake, J. Panpranot, et al., Bimetallic copper- and nickel-rich Cu-Ni phyllosilicate catalysts for the liquid phase selective hydrogenation of furfural to furfuryl alcohol, RSC Adv. 14 (2024) 38232– 38244.
40. T. Vandevyvere, M.K. Sabbe, J.W. Thybaut, and J. Lauwaert, Enhancing Stability of γ-Al2O3-Supported NiCu Catalysts by Impregnating Basic Oxides in the Hydrodeoxygenation of Anisole, Catalysts 14 (2024) 1–16.
41. M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015).
42. E. Syntyhaki, A. Detsi, and D. Karonis, Assessment of the Oxidative Desulfurization of Middle Distillate Surrogate Fuels with Spectroscopic Techniques, J. Anal. Methods Chem. 2020 (2020).
43. W. Trisunaryanti, S.A. Novianti, D.A. Fatmawati, T. Triyono, M. Ulfa, and D. Prasetyoko, Simple and Green Preparation of ZnO Blended with Highly Magnetic Silica Sand from Parangtritis Beach as Catalyst for Oxidative Desulfurization of Dibenzothiophene, Indones. J. Chem. 22 (2022) 455–467.
44. K. Castillo, J.G. Parsons, D. Chavez, and R.R. Chianelli, Oxidation of dibenzothiophene to dibenzothiophene-sulfone using silica gel, J. Catal. 268 (2009) 329–334.
45. K.C. Schreiber, Infrared Spectra of Sulfones and Related Compounds, Anal. Chem. 21 (1949) 1168–1172.
46. A. V. Akopyan, A.O. Shlenova, P.D. Polikarpova, and A. V. Vutolkina, High-Performance Heterogeneous Oxidative Desulfurization Catalyst with Brønsted Acid Sites, Pet. Chem. 62 (2022) 636–642.
47. M.E. Manríquez, A.L. Ortiz, M. Trejo-Valdez, L. V. Castro, and E. Ortiz-Islas, Catalytic oxidative desulfurization of 4,6-dimethyl dibenzothiophene by phosphotungstic acid loaded on Al2O3, V2O5, and ZrO2 oxides, React. Kinet. Mech. Catal. 135 (2022) 1523–1539.
48. A. Hesami, and S. Shahhosseini, Optimization of a novel catalytic extractive oxidative process for desulfurization of model and real fuels using a metal-free heterogenous catalyst (B4C), Case Stud. Chem. Environ. Eng. 9 (2024) 1–13.
49. C.M. Lousada, A.J. Johansson, T. Brinck, and M. Jonsson, Mechanism of H 2O 2 decomposition on transition metal oxide surfaces, J. Phys. Chem. C 116 (2012) 9533–9543.
50. G. Yu, D. Jin, F. Zhang, Q. Li, Z. Zhou, and Z. Ren, Oxidation-extraction desulfurization of fuel with a novel green acidic deep eutectic solvent system, Fuel 329 (2022) 125495.
51. N. Ahmad, E.S. Fitri, A. Wijaya, Amri, Mardiyanto, I. Royani, et al., Catalytic Oxidative Desulfurization of Dibenzothiophene Utilizing Composite Based Zn/Al Layered Double Hydroxide, Bull. Chem. React. Eng. Catal. 17 (2022) 733–742.
52. X. Zeng, A. Adesina, P. Li, H. Wang, and R. Zhou, Enhanced adsorptive-oxidative desulfurization of dibenzothiophene over Ti-MWW using cumene hydroperoxide as oxidant, Korean J. Chem. Eng. 39 (2022) 96–108.
53. Y. Muhammad, A. Shoukat, A.U. Rahman, H.U. Rashid, and W. Ahmad, Oxidative desulfurization of dibenzothiophene over Fe promoted Co–Mo/Al2O3 and Ni–Mo/Al2O3 catalysts using hydrogen peroxide and formic acid as oxidants, Chinese J. Chem. Eng. 26 (2018) 593–600.
54. A.A. Aabid, J.I. Humadi, G.S. Ahmed, A.T. Jarullah, M.A. Ahmed, and W.S. Abdullah, Enhancement of Desulfurization Process for Light Gas Oil Using New Zinc Oxide Loaded Over Alumina Nanocatalyst, Appl. Sci. Eng. Prog. 16 (2023) 6756.
